# Evaluate the left hand and right hand limits of the function\[f(x)=\left\{ \begin{matrix} \dfrac{\sqrt{({{x}^{2}}-6x+9)}}{(x-3)},x\ne 3 \\ 0,x=3 \\

\end{matrix}\text{ at }x=3. \right.\]

Last updated date: 22nd Mar 2023

•

Total views: 306.3k

•

Views today: 3.84k

Answer

Verified

306.3k+ views

Hint: For finding out whether the limit exists, then we should find the left hand limit and right hand limit. If they are equal then the limit exists.

Complete step-by-step answer:

First we will simplify the given function, that is,

$\underset{x\to 3}{\mathop{\lim }}\,f(x)=\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\sqrt{{{x}^{2}}-6x+9}}{x-3}$

The numerator consists of a quadratic equation, now we will simplify it as follows,

$\underset{x\to 3}{\mathop{\lim }}\,f(x)=\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\sqrt{{{x}^{2}}-3x-3x+9}}{x-3}$

$\underset{x\to 3}{\mathop{\lim }}\,f(x)=\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\sqrt{x(x-3)-3(x-3)}}{(x-3)}$

\[\Rightarrow \underset{x\to 3}{\mathop{\lim }}\,f(x)=\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\sqrt{(x-3)(x-3)}}{(x-3)}\]

$\Rightarrow \underset{x\to 3}{\mathop{\lim }}\,f(x)=\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\sqrt{{{(x-3)}^{2}}}}{(x-3)}$

We know, $\sqrt{4}=\pm 2$ , so the above equation can be written as,

$\Rightarrow \underset{x\to 3}{\mathop{\lim }}\,f(x)=\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\left| x-3 \right|}{(x-3)}.......(i)$

Now the modulus can be split as following,

$f(x)=\left\{ \begin{matrix}

\dfrac{x-3}{x-3},x>0 \\

\dfrac{-(x-3)}{x-3},x<0 \\

\end{matrix} \right.$

Now we will find the left hand limit, we get

$\underset{x\to {{3}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{3}^{-}}}{\mathop{\lim }}\,\dfrac{-(x-3)}{x-3}$

Cancelling the like terms, we get

$\underset{x\to {{3}^{-}}}{\mathop{\lim }}\,f(x)=-1$

So, the left hand limit of the given function is $'-1'$.

Now we will find the right hand limit, we get

$\underset{x\to {{3}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{3}^{+}}}{\mathop{\lim }}\,\dfrac{(x-3)}{x-3}$

Cancelling the like terms, we get

$\underset{x\to {{3}^{+}}}{\mathop{\lim }}\,f(x)=1$

So, the right hand limit of the given function is $'1'$.

So the left hand limit and the right hand limit are not equal hence the $\underset{x\to 3}{\mathop{\lim }}\,f(x)\text{ }$does not exist.

Note: Generally these questions are asked in competitive examinations for confusing students. Instead of solving and then finding the left hand limit and right hand limit. We can directly apply the \[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,g(x)=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{g(0+h)-g(0)}{h}\], this formula, but it will be complicated process.

Complete step-by-step answer:

First we will simplify the given function, that is,

$\underset{x\to 3}{\mathop{\lim }}\,f(x)=\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\sqrt{{{x}^{2}}-6x+9}}{x-3}$

The numerator consists of a quadratic equation, now we will simplify it as follows,

$\underset{x\to 3}{\mathop{\lim }}\,f(x)=\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\sqrt{{{x}^{2}}-3x-3x+9}}{x-3}$

$\underset{x\to 3}{\mathop{\lim }}\,f(x)=\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\sqrt{x(x-3)-3(x-3)}}{(x-3)}$

\[\Rightarrow \underset{x\to 3}{\mathop{\lim }}\,f(x)=\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\sqrt{(x-3)(x-3)}}{(x-3)}\]

$\Rightarrow \underset{x\to 3}{\mathop{\lim }}\,f(x)=\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\sqrt{{{(x-3)}^{2}}}}{(x-3)}$

We know, $\sqrt{4}=\pm 2$ , so the above equation can be written as,

$\Rightarrow \underset{x\to 3}{\mathop{\lim }}\,f(x)=\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\left| x-3 \right|}{(x-3)}.......(i)$

Now the modulus can be split as following,

$f(x)=\left\{ \begin{matrix}

\dfrac{x-3}{x-3},x>0 \\

\dfrac{-(x-3)}{x-3},x<0 \\

\end{matrix} \right.$

Now we will find the left hand limit, we get

$\underset{x\to {{3}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{3}^{-}}}{\mathop{\lim }}\,\dfrac{-(x-3)}{x-3}$

Cancelling the like terms, we get

$\underset{x\to {{3}^{-}}}{\mathop{\lim }}\,f(x)=-1$

So, the left hand limit of the given function is $'-1'$.

Now we will find the right hand limit, we get

$\underset{x\to {{3}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{3}^{+}}}{\mathop{\lim }}\,\dfrac{(x-3)}{x-3}$

Cancelling the like terms, we get

$\underset{x\to {{3}^{+}}}{\mathop{\lim }}\,f(x)=1$

So, the right hand limit of the given function is $'1'$.

So the left hand limit and the right hand limit are not equal hence the $\underset{x\to 3}{\mathop{\lim }}\,f(x)\text{ }$does not exist.

Note: Generally these questions are asked in competitive examinations for confusing students. Instead of solving and then finding the left hand limit and right hand limit. We can directly apply the \[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,g(x)=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{g(0+h)-g(0)}{h}\], this formula, but it will be complicated process.

Recently Updated Pages

Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE