Answer
Verified
491.4k+ views
Hint: For finding out whether the limit exists, then we should find the left hand limit and right hand limit. If they are equal then the limit exists.
Complete step-by-step answer:
First we will simplify the given function, that is,
$\underset{x\to 3}{\mathop{\lim }}\,f(x)=\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\sqrt{{{x}^{2}}-6x+9}}{x-3}$
The numerator consists of a quadratic equation, now we will simplify it as follows,
$\underset{x\to 3}{\mathop{\lim }}\,f(x)=\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\sqrt{{{x}^{2}}-3x-3x+9}}{x-3}$
$\underset{x\to 3}{\mathop{\lim }}\,f(x)=\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\sqrt{x(x-3)-3(x-3)}}{(x-3)}$
\[\Rightarrow \underset{x\to 3}{\mathop{\lim }}\,f(x)=\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\sqrt{(x-3)(x-3)}}{(x-3)}\]
$\Rightarrow \underset{x\to 3}{\mathop{\lim }}\,f(x)=\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\sqrt{{{(x-3)}^{2}}}}{(x-3)}$
We know, $\sqrt{4}=\pm 2$ , so the above equation can be written as,
$\Rightarrow \underset{x\to 3}{\mathop{\lim }}\,f(x)=\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\left| x-3 \right|}{(x-3)}.......(i)$
Now the modulus can be split as following,
$f(x)=\left\{ \begin{matrix}
\dfrac{x-3}{x-3},x>0 \\
\dfrac{-(x-3)}{x-3},x<0 \\
\end{matrix} \right.$
Now we will find the left hand limit, we get
$\underset{x\to {{3}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{3}^{-}}}{\mathop{\lim }}\,\dfrac{-(x-3)}{x-3}$
Cancelling the like terms, we get
$\underset{x\to {{3}^{-}}}{\mathop{\lim }}\,f(x)=-1$
So, the left hand limit of the given function is $'-1'$.
Now we will find the right hand limit, we get
$\underset{x\to {{3}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{3}^{+}}}{\mathop{\lim }}\,\dfrac{(x-3)}{x-3}$
Cancelling the like terms, we get
$\underset{x\to {{3}^{+}}}{\mathop{\lim }}\,f(x)=1$
So, the right hand limit of the given function is $'1'$.
So the left hand limit and the right hand limit are not equal hence the $\underset{x\to 3}{\mathop{\lim }}\,f(x)\text{ }$does not exist.
Note: Generally these questions are asked in competitive examinations for confusing students. Instead of solving and then finding the left hand limit and right hand limit. We can directly apply the \[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,g(x)=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{g(0+h)-g(0)}{h}\], this formula, but it will be complicated process.
Complete step-by-step answer:
First we will simplify the given function, that is,
$\underset{x\to 3}{\mathop{\lim }}\,f(x)=\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\sqrt{{{x}^{2}}-6x+9}}{x-3}$
The numerator consists of a quadratic equation, now we will simplify it as follows,
$\underset{x\to 3}{\mathop{\lim }}\,f(x)=\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\sqrt{{{x}^{2}}-3x-3x+9}}{x-3}$
$\underset{x\to 3}{\mathop{\lim }}\,f(x)=\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\sqrt{x(x-3)-3(x-3)}}{(x-3)}$
\[\Rightarrow \underset{x\to 3}{\mathop{\lim }}\,f(x)=\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\sqrt{(x-3)(x-3)}}{(x-3)}\]
$\Rightarrow \underset{x\to 3}{\mathop{\lim }}\,f(x)=\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\sqrt{{{(x-3)}^{2}}}}{(x-3)}$
We know, $\sqrt{4}=\pm 2$ , so the above equation can be written as,
$\Rightarrow \underset{x\to 3}{\mathop{\lim }}\,f(x)=\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\left| x-3 \right|}{(x-3)}.......(i)$
Now the modulus can be split as following,
$f(x)=\left\{ \begin{matrix}
\dfrac{x-3}{x-3},x>0 \\
\dfrac{-(x-3)}{x-3},x<0 \\
\end{matrix} \right.$
Now we will find the left hand limit, we get
$\underset{x\to {{3}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{3}^{-}}}{\mathop{\lim }}\,\dfrac{-(x-3)}{x-3}$
Cancelling the like terms, we get
$\underset{x\to {{3}^{-}}}{\mathop{\lim }}\,f(x)=-1$
So, the left hand limit of the given function is $'-1'$.
Now we will find the right hand limit, we get
$\underset{x\to {{3}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{3}^{+}}}{\mathop{\lim }}\,\dfrac{(x-3)}{x-3}$
Cancelling the like terms, we get
$\underset{x\to {{3}^{+}}}{\mathop{\lim }}\,f(x)=1$
So, the right hand limit of the given function is $'1'$.
So the left hand limit and the right hand limit are not equal hence the $\underset{x\to 3}{\mathop{\lim }}\,f(x)\text{ }$does not exist.
Note: Generally these questions are asked in competitive examinations for confusing students. Instead of solving and then finding the left hand limit and right hand limit. We can directly apply the \[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,g(x)=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{g(0+h)-g(0)}{h}\], this formula, but it will be complicated process.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
The male gender of Mare is Horse class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths