
Evaluate the left hand and right hand limits of the function\[f(x)=\left\{ \begin{matrix} \dfrac{\sqrt{({{x}^{2}}-6x+9)}}{(x-3)},x\ne 3 \\ 0,x=3 \\
\end{matrix}\text{ at }x=3. \right.\]
Answer
606.3k+ views
Hint: For finding out whether the limit exists, then we should find the left hand limit and right hand limit. If they are equal then the limit exists.
Complete step-by-step answer:
First we will simplify the given function, that is,
$\underset{x\to 3}{\mathop{\lim }}\,f(x)=\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\sqrt{{{x}^{2}}-6x+9}}{x-3}$
The numerator consists of a quadratic equation, now we will simplify it as follows,
$\underset{x\to 3}{\mathop{\lim }}\,f(x)=\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\sqrt{{{x}^{2}}-3x-3x+9}}{x-3}$
$\underset{x\to 3}{\mathop{\lim }}\,f(x)=\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\sqrt{x(x-3)-3(x-3)}}{(x-3)}$
\[\Rightarrow \underset{x\to 3}{\mathop{\lim }}\,f(x)=\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\sqrt{(x-3)(x-3)}}{(x-3)}\]
$\Rightarrow \underset{x\to 3}{\mathop{\lim }}\,f(x)=\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\sqrt{{{(x-3)}^{2}}}}{(x-3)}$
We know, $\sqrt{4}=\pm 2$ , so the above equation can be written as,
$\Rightarrow \underset{x\to 3}{\mathop{\lim }}\,f(x)=\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\left| x-3 \right|}{(x-3)}.......(i)$
Now the modulus can be split as following,
$f(x)=\left\{ \begin{matrix}
\dfrac{x-3}{x-3},x>0 \\
\dfrac{-(x-3)}{x-3},x<0 \\
\end{matrix} \right.$
Now we will find the left hand limit, we get
$\underset{x\to {{3}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{3}^{-}}}{\mathop{\lim }}\,\dfrac{-(x-3)}{x-3}$
Cancelling the like terms, we get
$\underset{x\to {{3}^{-}}}{\mathop{\lim }}\,f(x)=-1$
So, the left hand limit of the given function is $'-1'$.
Now we will find the right hand limit, we get
$\underset{x\to {{3}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{3}^{+}}}{\mathop{\lim }}\,\dfrac{(x-3)}{x-3}$
Cancelling the like terms, we get
$\underset{x\to {{3}^{+}}}{\mathop{\lim }}\,f(x)=1$
So, the right hand limit of the given function is $'1'$.
So the left hand limit and the right hand limit are not equal hence the $\underset{x\to 3}{\mathop{\lim }}\,f(x)\text{ }$does not exist.
Note: Generally these questions are asked in competitive examinations for confusing students. Instead of solving and then finding the left hand limit and right hand limit. We can directly apply the \[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,g(x)=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{g(0+h)-g(0)}{h}\], this formula, but it will be complicated process.
Complete step-by-step answer:
First we will simplify the given function, that is,
$\underset{x\to 3}{\mathop{\lim }}\,f(x)=\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\sqrt{{{x}^{2}}-6x+9}}{x-3}$
The numerator consists of a quadratic equation, now we will simplify it as follows,
$\underset{x\to 3}{\mathop{\lim }}\,f(x)=\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\sqrt{{{x}^{2}}-3x-3x+9}}{x-3}$
$\underset{x\to 3}{\mathop{\lim }}\,f(x)=\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\sqrt{x(x-3)-3(x-3)}}{(x-3)}$
\[\Rightarrow \underset{x\to 3}{\mathop{\lim }}\,f(x)=\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\sqrt{(x-3)(x-3)}}{(x-3)}\]
$\Rightarrow \underset{x\to 3}{\mathop{\lim }}\,f(x)=\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\sqrt{{{(x-3)}^{2}}}}{(x-3)}$
We know, $\sqrt{4}=\pm 2$ , so the above equation can be written as,
$\Rightarrow \underset{x\to 3}{\mathop{\lim }}\,f(x)=\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\left| x-3 \right|}{(x-3)}.......(i)$
Now the modulus can be split as following,
$f(x)=\left\{ \begin{matrix}
\dfrac{x-3}{x-3},x>0 \\
\dfrac{-(x-3)}{x-3},x<0 \\
\end{matrix} \right.$
Now we will find the left hand limit, we get
$\underset{x\to {{3}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{3}^{-}}}{\mathop{\lim }}\,\dfrac{-(x-3)}{x-3}$
Cancelling the like terms, we get
$\underset{x\to {{3}^{-}}}{\mathop{\lim }}\,f(x)=-1$
So, the left hand limit of the given function is $'-1'$.
Now we will find the right hand limit, we get
$\underset{x\to {{3}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{3}^{+}}}{\mathop{\lim }}\,\dfrac{(x-3)}{x-3}$
Cancelling the like terms, we get
$\underset{x\to {{3}^{+}}}{\mathop{\lim }}\,f(x)=1$
So, the right hand limit of the given function is $'1'$.
So the left hand limit and the right hand limit are not equal hence the $\underset{x\to 3}{\mathop{\lim }}\,f(x)\text{ }$does not exist.
Note: Generally these questions are asked in competitive examinations for confusing students. Instead of solving and then finding the left hand limit and right hand limit. We can directly apply the \[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,g(x)=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{g(0+h)-g(0)}{h}\], this formula, but it will be complicated process.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

