
Evaluate the integral:
$\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\sec x}{\sec x+\cos ecx}dx}$.
(a) $\dfrac{\pi }{3}$
(b) $\dfrac{\pi }{2}$
(c) $\dfrac{\pi }{4}$
(d) $\dfrac{\pi }{8}$
Answer
602.4k+ views
Hint: Assume the integral be equal to ‘$I$’. Change $\sec \theta $ and $\cos ec\theta $ into their respective reciprocals. Then use the property of definite integral given by: $\int\limits_{a}^{b}{f(x)}dx=\int\limits_{a}^{b}{f(a+b-x)}dx$ to simplify the integral.
Complete step-by-step answer:
Here, we have been provided with a definite integral. There are certain properties of definite integral but here we will use a basic property which is, $\int\limits_{a}^{b}{f(x)}dx=\int\limits_{a}^{b}{f(a+b-x)}dx$.
Now, let us come to the question. Let us assume the given integral is ‘$I$’. Therefore,
\[I=\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\sec x}{\sec x+\cos ecx}dx}\]
Now, we use the transformations, $\sec \theta =\dfrac{1}{\cos \theta }\text{ and cosec}\theta =\dfrac{1}{\sin \theta }$.
$\begin{align}
& \therefore I=\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\dfrac{1}{\cos x}}{\dfrac{1}{\cos x}+\dfrac{1}{\sin x}}dx} \\
& =\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\cos x\sin x}{\cos x\left( \cos x+\sin x \right)}dx} \\
& =\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\sin x}{\cos x+\sin x}dx}......................(i) \\
\end{align}$
Now, using the property, $\int\limits_{a}^{b}{f(x)}dx=\int\limits_{a}^{b}{f(a+b-x)}dx$, we get, \[\begin{align}
& I=\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\sin \left( \dfrac{\pi }{2}+0-x \right)}{\cos \left( \dfrac{\pi }{2}+0-x \right)+\sin \left( \dfrac{\pi }{2}+0-x \right)}dx} \\
& =\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\sin \left( \dfrac{\pi }{2}-x \right)}{\cos \left( \dfrac{\pi }{2}-x \right)+\sin \left( \dfrac{\pi }{2}-x \right)}dx} \\
\end{align}\]
Using complementary angle rule, $\sin \left( \dfrac{\pi }{2}-\theta \right)=\cos \theta \text{ and cos}\left( \dfrac{\pi }{2}-\theta \right)=\sin \theta $, we have,
\[I=\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\cos x}{\sin x+\cos x}dx}.....................(ii)\]
Adding equations (i) and (ii), we get,
\[\begin{align}
& 2I=\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\sin x}{\cos x+\sin x}dx}+\int_{0}^{\dfrac{\pi }{2}}{\dfrac{co\operatorname{s}x}{\sin x+\cos x}dx} \\
& \text{ }=\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\sin x+\cos x}{\cos x+\sin x}dx} \\
& \text{ }=\int_{0}^{\dfrac{\pi }{2}}{dx} \\
& \text{ }=\left[ x \right]_{0}^{\dfrac{\pi }{2}} \\
& \text{ }=\left( \dfrac{\pi }{2}-0 \right) \\
& \text{ }=\dfrac{\pi }{2} \\
& \therefore I=\dfrac{1}{2}\times \dfrac{\pi }{2} \\
& \text{ }=\dfrac{\pi }{4} \\
\end{align}\]
Hence, option (c) is the correct answer.
Note: Properties of definite integrals are very important. Here, we have used one of the properties of definite integral and it became so easy to simplify. If we will not use properties of definite integral here and solve it like an indefinite integral then it will be a very lengthy and time consuming process. So, basic properties of definite integral are important to solve this question.
Complete step-by-step answer:
Here, we have been provided with a definite integral. There are certain properties of definite integral but here we will use a basic property which is, $\int\limits_{a}^{b}{f(x)}dx=\int\limits_{a}^{b}{f(a+b-x)}dx$.
Now, let us come to the question. Let us assume the given integral is ‘$I$’. Therefore,
\[I=\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\sec x}{\sec x+\cos ecx}dx}\]
Now, we use the transformations, $\sec \theta =\dfrac{1}{\cos \theta }\text{ and cosec}\theta =\dfrac{1}{\sin \theta }$.
$\begin{align}
& \therefore I=\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\dfrac{1}{\cos x}}{\dfrac{1}{\cos x}+\dfrac{1}{\sin x}}dx} \\
& =\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\cos x\sin x}{\cos x\left( \cos x+\sin x \right)}dx} \\
& =\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\sin x}{\cos x+\sin x}dx}......................(i) \\
\end{align}$
Now, using the property, $\int\limits_{a}^{b}{f(x)}dx=\int\limits_{a}^{b}{f(a+b-x)}dx$, we get, \[\begin{align}
& I=\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\sin \left( \dfrac{\pi }{2}+0-x \right)}{\cos \left( \dfrac{\pi }{2}+0-x \right)+\sin \left( \dfrac{\pi }{2}+0-x \right)}dx} \\
& =\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\sin \left( \dfrac{\pi }{2}-x \right)}{\cos \left( \dfrac{\pi }{2}-x \right)+\sin \left( \dfrac{\pi }{2}-x \right)}dx} \\
\end{align}\]
Using complementary angle rule, $\sin \left( \dfrac{\pi }{2}-\theta \right)=\cos \theta \text{ and cos}\left( \dfrac{\pi }{2}-\theta \right)=\sin \theta $, we have,
\[I=\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\cos x}{\sin x+\cos x}dx}.....................(ii)\]
Adding equations (i) and (ii), we get,
\[\begin{align}
& 2I=\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\sin x}{\cos x+\sin x}dx}+\int_{0}^{\dfrac{\pi }{2}}{\dfrac{co\operatorname{s}x}{\sin x+\cos x}dx} \\
& \text{ }=\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\sin x+\cos x}{\cos x+\sin x}dx} \\
& \text{ }=\int_{0}^{\dfrac{\pi }{2}}{dx} \\
& \text{ }=\left[ x \right]_{0}^{\dfrac{\pi }{2}} \\
& \text{ }=\left( \dfrac{\pi }{2}-0 \right) \\
& \text{ }=\dfrac{\pi }{2} \\
& \therefore I=\dfrac{1}{2}\times \dfrac{\pi }{2} \\
& \text{ }=\dfrac{\pi }{4} \\
\end{align}\]
Hence, option (c) is the correct answer.
Note: Properties of definite integrals are very important. Here, we have used one of the properties of definite integral and it became so easy to simplify. If we will not use properties of definite integral here and solve it like an indefinite integral then it will be a very lengthy and time consuming process. So, basic properties of definite integral are important to solve this question.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

