
Evaluate the integral:
$\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\sec x}{\sec x+\cos ecx}dx}$.
(a) $\dfrac{\pi }{3}$
(b) $\dfrac{\pi }{2}$
(c) $\dfrac{\pi }{4}$
(d) $\dfrac{\pi }{8}$
Answer
616.5k+ views
Hint: Assume the integral be equal to ‘$I$’. Change $\sec \theta $ and $\cos ec\theta $ into their respective reciprocals. Then use the property of definite integral given by: $\int\limits_{a}^{b}{f(x)}dx=\int\limits_{a}^{b}{f(a+b-x)}dx$ to simplify the integral.
Complete step-by-step answer:
Here, we have been provided with a definite integral. There are certain properties of definite integral but here we will use a basic property which is, $\int\limits_{a}^{b}{f(x)}dx=\int\limits_{a}^{b}{f(a+b-x)}dx$.
Now, let us come to the question. Let us assume the given integral is ‘$I$’. Therefore,
\[I=\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\sec x}{\sec x+\cos ecx}dx}\]
Now, we use the transformations, $\sec \theta =\dfrac{1}{\cos \theta }\text{ and cosec}\theta =\dfrac{1}{\sin \theta }$.
$\begin{align}
& \therefore I=\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\dfrac{1}{\cos x}}{\dfrac{1}{\cos x}+\dfrac{1}{\sin x}}dx} \\
& =\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\cos x\sin x}{\cos x\left( \cos x+\sin x \right)}dx} \\
& =\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\sin x}{\cos x+\sin x}dx}......................(i) \\
\end{align}$
Now, using the property, $\int\limits_{a}^{b}{f(x)}dx=\int\limits_{a}^{b}{f(a+b-x)}dx$, we get, \[\begin{align}
& I=\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\sin \left( \dfrac{\pi }{2}+0-x \right)}{\cos \left( \dfrac{\pi }{2}+0-x \right)+\sin \left( \dfrac{\pi }{2}+0-x \right)}dx} \\
& =\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\sin \left( \dfrac{\pi }{2}-x \right)}{\cos \left( \dfrac{\pi }{2}-x \right)+\sin \left( \dfrac{\pi }{2}-x \right)}dx} \\
\end{align}\]
Using complementary angle rule, $\sin \left( \dfrac{\pi }{2}-\theta \right)=\cos \theta \text{ and cos}\left( \dfrac{\pi }{2}-\theta \right)=\sin \theta $, we have,
\[I=\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\cos x}{\sin x+\cos x}dx}.....................(ii)\]
Adding equations (i) and (ii), we get,
\[\begin{align}
& 2I=\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\sin x}{\cos x+\sin x}dx}+\int_{0}^{\dfrac{\pi }{2}}{\dfrac{co\operatorname{s}x}{\sin x+\cos x}dx} \\
& \text{ }=\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\sin x+\cos x}{\cos x+\sin x}dx} \\
& \text{ }=\int_{0}^{\dfrac{\pi }{2}}{dx} \\
& \text{ }=\left[ x \right]_{0}^{\dfrac{\pi }{2}} \\
& \text{ }=\left( \dfrac{\pi }{2}-0 \right) \\
& \text{ }=\dfrac{\pi }{2} \\
& \therefore I=\dfrac{1}{2}\times \dfrac{\pi }{2} \\
& \text{ }=\dfrac{\pi }{4} \\
\end{align}\]
Hence, option (c) is the correct answer.
Note: Properties of definite integrals are very important. Here, we have used one of the properties of definite integral and it became so easy to simplify. If we will not use properties of definite integral here and solve it like an indefinite integral then it will be a very lengthy and time consuming process. So, basic properties of definite integral are important to solve this question.
Complete step-by-step answer:
Here, we have been provided with a definite integral. There are certain properties of definite integral but here we will use a basic property which is, $\int\limits_{a}^{b}{f(x)}dx=\int\limits_{a}^{b}{f(a+b-x)}dx$.
Now, let us come to the question. Let us assume the given integral is ‘$I$’. Therefore,
\[I=\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\sec x}{\sec x+\cos ecx}dx}\]
Now, we use the transformations, $\sec \theta =\dfrac{1}{\cos \theta }\text{ and cosec}\theta =\dfrac{1}{\sin \theta }$.
$\begin{align}
& \therefore I=\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\dfrac{1}{\cos x}}{\dfrac{1}{\cos x}+\dfrac{1}{\sin x}}dx} \\
& =\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\cos x\sin x}{\cos x\left( \cos x+\sin x \right)}dx} \\
& =\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\sin x}{\cos x+\sin x}dx}......................(i) \\
\end{align}$
Now, using the property, $\int\limits_{a}^{b}{f(x)}dx=\int\limits_{a}^{b}{f(a+b-x)}dx$, we get, \[\begin{align}
& I=\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\sin \left( \dfrac{\pi }{2}+0-x \right)}{\cos \left( \dfrac{\pi }{2}+0-x \right)+\sin \left( \dfrac{\pi }{2}+0-x \right)}dx} \\
& =\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\sin \left( \dfrac{\pi }{2}-x \right)}{\cos \left( \dfrac{\pi }{2}-x \right)+\sin \left( \dfrac{\pi }{2}-x \right)}dx} \\
\end{align}\]
Using complementary angle rule, $\sin \left( \dfrac{\pi }{2}-\theta \right)=\cos \theta \text{ and cos}\left( \dfrac{\pi }{2}-\theta \right)=\sin \theta $, we have,
\[I=\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\cos x}{\sin x+\cos x}dx}.....................(ii)\]
Adding equations (i) and (ii), we get,
\[\begin{align}
& 2I=\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\sin x}{\cos x+\sin x}dx}+\int_{0}^{\dfrac{\pi }{2}}{\dfrac{co\operatorname{s}x}{\sin x+\cos x}dx} \\
& \text{ }=\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\sin x+\cos x}{\cos x+\sin x}dx} \\
& \text{ }=\int_{0}^{\dfrac{\pi }{2}}{dx} \\
& \text{ }=\left[ x \right]_{0}^{\dfrac{\pi }{2}} \\
& \text{ }=\left( \dfrac{\pi }{2}-0 \right) \\
& \text{ }=\dfrac{\pi }{2} \\
& \therefore I=\dfrac{1}{2}\times \dfrac{\pi }{2} \\
& \text{ }=\dfrac{\pi }{4} \\
\end{align}\]
Hence, option (c) is the correct answer.
Note: Properties of definite integrals are very important. Here, we have used one of the properties of definite integral and it became so easy to simplify. If we will not use properties of definite integral here and solve it like an indefinite integral then it will be a very lengthy and time consuming process. So, basic properties of definite integral are important to solve this question.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

