
Evaluate the integral:
$\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\sec x}{\sec x+\cos ecx}dx}$.
(a) $\dfrac{\pi }{3}$
(b) $\dfrac{\pi }{2}$
(c) $\dfrac{\pi }{4}$
(d) $\dfrac{\pi }{8}$
Answer
519.3k+ views
Hint: Assume the integral be equal to ‘$I$’. Change $\sec \theta $ and $\cos ec\theta $ into their respective reciprocals. Then use the property of definite integral given by: $\int\limits_{a}^{b}{f(x)}dx=\int\limits_{a}^{b}{f(a+b-x)}dx$ to simplify the integral.
Complete step-by-step answer:
Here, we have been provided with a definite integral. There are certain properties of definite integral but here we will use a basic property which is, $\int\limits_{a}^{b}{f(x)}dx=\int\limits_{a}^{b}{f(a+b-x)}dx$.
Now, let us come to the question. Let us assume the given integral is ‘$I$’. Therefore,
\[I=\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\sec x}{\sec x+\cos ecx}dx}\]
Now, we use the transformations, $\sec \theta =\dfrac{1}{\cos \theta }\text{ and cosec}\theta =\dfrac{1}{\sin \theta }$.
$\begin{align}
& \therefore I=\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\dfrac{1}{\cos x}}{\dfrac{1}{\cos x}+\dfrac{1}{\sin x}}dx} \\
& =\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\cos x\sin x}{\cos x\left( \cos x+\sin x \right)}dx} \\
& =\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\sin x}{\cos x+\sin x}dx}......................(i) \\
\end{align}$
Now, using the property, $\int\limits_{a}^{b}{f(x)}dx=\int\limits_{a}^{b}{f(a+b-x)}dx$, we get, \[\begin{align}
& I=\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\sin \left( \dfrac{\pi }{2}+0-x \right)}{\cos \left( \dfrac{\pi }{2}+0-x \right)+\sin \left( \dfrac{\pi }{2}+0-x \right)}dx} \\
& =\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\sin \left( \dfrac{\pi }{2}-x \right)}{\cos \left( \dfrac{\pi }{2}-x \right)+\sin \left( \dfrac{\pi }{2}-x \right)}dx} \\
\end{align}\]
Using complementary angle rule, $\sin \left( \dfrac{\pi }{2}-\theta \right)=\cos \theta \text{ and cos}\left( \dfrac{\pi }{2}-\theta \right)=\sin \theta $, we have,
\[I=\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\cos x}{\sin x+\cos x}dx}.....................(ii)\]
Adding equations (i) and (ii), we get,
\[\begin{align}
& 2I=\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\sin x}{\cos x+\sin x}dx}+\int_{0}^{\dfrac{\pi }{2}}{\dfrac{co\operatorname{s}x}{\sin x+\cos x}dx} \\
& \text{ }=\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\sin x+\cos x}{\cos x+\sin x}dx} \\
& \text{ }=\int_{0}^{\dfrac{\pi }{2}}{dx} \\
& \text{ }=\left[ x \right]_{0}^{\dfrac{\pi }{2}} \\
& \text{ }=\left( \dfrac{\pi }{2}-0 \right) \\
& \text{ }=\dfrac{\pi }{2} \\
& \therefore I=\dfrac{1}{2}\times \dfrac{\pi }{2} \\
& \text{ }=\dfrac{\pi }{4} \\
\end{align}\]
Hence, option (c) is the correct answer.
Note: Properties of definite integrals are very important. Here, we have used one of the properties of definite integral and it became so easy to simplify. If we will not use properties of definite integral here and solve it like an indefinite integral then it will be a very lengthy and time consuming process. So, basic properties of definite integral are important to solve this question.
Complete step-by-step answer:
Here, we have been provided with a definite integral. There are certain properties of definite integral but here we will use a basic property which is, $\int\limits_{a}^{b}{f(x)}dx=\int\limits_{a}^{b}{f(a+b-x)}dx$.
Now, let us come to the question. Let us assume the given integral is ‘$I$’. Therefore,
\[I=\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\sec x}{\sec x+\cos ecx}dx}\]
Now, we use the transformations, $\sec \theta =\dfrac{1}{\cos \theta }\text{ and cosec}\theta =\dfrac{1}{\sin \theta }$.
$\begin{align}
& \therefore I=\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\dfrac{1}{\cos x}}{\dfrac{1}{\cos x}+\dfrac{1}{\sin x}}dx} \\
& =\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\cos x\sin x}{\cos x\left( \cos x+\sin x \right)}dx} \\
& =\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\sin x}{\cos x+\sin x}dx}......................(i) \\
\end{align}$
Now, using the property, $\int\limits_{a}^{b}{f(x)}dx=\int\limits_{a}^{b}{f(a+b-x)}dx$, we get, \[\begin{align}
& I=\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\sin \left( \dfrac{\pi }{2}+0-x \right)}{\cos \left( \dfrac{\pi }{2}+0-x \right)+\sin \left( \dfrac{\pi }{2}+0-x \right)}dx} \\
& =\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\sin \left( \dfrac{\pi }{2}-x \right)}{\cos \left( \dfrac{\pi }{2}-x \right)+\sin \left( \dfrac{\pi }{2}-x \right)}dx} \\
\end{align}\]
Using complementary angle rule, $\sin \left( \dfrac{\pi }{2}-\theta \right)=\cos \theta \text{ and cos}\left( \dfrac{\pi }{2}-\theta \right)=\sin \theta $, we have,
\[I=\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\cos x}{\sin x+\cos x}dx}.....................(ii)\]
Adding equations (i) and (ii), we get,
\[\begin{align}
& 2I=\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\sin x}{\cos x+\sin x}dx}+\int_{0}^{\dfrac{\pi }{2}}{\dfrac{co\operatorname{s}x}{\sin x+\cos x}dx} \\
& \text{ }=\int_{0}^{\dfrac{\pi }{2}}{\dfrac{\sin x+\cos x}{\cos x+\sin x}dx} \\
& \text{ }=\int_{0}^{\dfrac{\pi }{2}}{dx} \\
& \text{ }=\left[ x \right]_{0}^{\dfrac{\pi }{2}} \\
& \text{ }=\left( \dfrac{\pi }{2}-0 \right) \\
& \text{ }=\dfrac{\pi }{2} \\
& \therefore I=\dfrac{1}{2}\times \dfrac{\pi }{2} \\
& \text{ }=\dfrac{\pi }{4} \\
\end{align}\]
Hence, option (c) is the correct answer.
Note: Properties of definite integrals are very important. Here, we have used one of the properties of definite integral and it became so easy to simplify. If we will not use properties of definite integral here and solve it like an indefinite integral then it will be a very lengthy and time consuming process. So, basic properties of definite integral are important to solve this question.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Express the following as a fraction and simplify a class 7 maths CBSE

The length and width of a rectangle are in ratio of class 7 maths CBSE

The ratio of the income to the expenditure of a family class 7 maths CBSE

How do you write 025 million in scientific notatio class 7 maths CBSE

Trending doubts
The gas that burns in oxygen with a green flame is class 12 chemistry CBSE

The probability that a leap year will have only 52 class 12 maths CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE
