
Evaluate the integral $\int {\frac{{{x^6} + 1}}{{{x^2} + 1}}} dx$
Answer
608.7k+ views
Hint: Here, the given integral can be solved by simplifying the integral first and
then applying the suitable formulae of integrals.
Given,
$\int {\frac{{{x^6} + 1}}{{{x^2} + 1}}} dx \to (1)$
Now, let us consider the numerator ${x^6} + 1$ as we can see it is in the form of ${a^3} +
{b^3}$ where $a = {x^2},b = 1$ .
Since, we know ${a^3} + {b^3} = (a + b)({a^2} - ab + {b^2})$.
Now, we can expand ${x^6} + 1$ as
\[ \Rightarrow {x^6} + 1 = {({x^2})^3} + 1 = ({x^2} + 1)({x^4} - {x^2} + 1)\]
Now, equation (1) can be rewritten as follows:
$ \Rightarrow \int {\frac{{({x^2} + 1)({x^4} - {x^2} + 1)}}{{{x^2} + 1}}} dx$
Here, ${x^2} + 1$ term gets cancelled and we will be left with
$ \Rightarrow \int {({x^4} - {x^2} + 1)dx} $
Applying, integral to each term, we get
$ \Rightarrow \int {{x^4}dx - \int {{x^2}dx + \int {1dx} } } $
As we know that $\int {{x^n}dx = \int {\frac{{{x^{n + 1}}}}{{n + 1}} + c,} } $ where ‘c’ is the
constant of integration. So applying the formulae, we get
$
\Rightarrow \frac{{{x^{4 + 1}}}}{{4 + 1}} - \frac{{{x^{2 + 1}}}}{{2 + 1}} + x + c[\because \int
{dx} = x] \\
\Rightarrow \frac{{{x^5}}}{5} - \frac{{{x^3}}}{3} + x + c \\
$
Hence, $\int {\frac{{{x^6} + 1}}{{{x^2} + 1}}} dx$$ = \frac{{{x^5}}}{5} - \frac{{{x^3}}}{3} + x + c$
where ‘c ‘is the constant of integration.
Note: The alternate approach for solving this question is by substitution method where $x =
\tan t$ and $dx = {\sec ^2}tdt$.
then applying the suitable formulae of integrals.
Given,
$\int {\frac{{{x^6} + 1}}{{{x^2} + 1}}} dx \to (1)$
Now, let us consider the numerator ${x^6} + 1$ as we can see it is in the form of ${a^3} +
{b^3}$ where $a = {x^2},b = 1$ .
Since, we know ${a^3} + {b^3} = (a + b)({a^2} - ab + {b^2})$.
Now, we can expand ${x^6} + 1$ as
\[ \Rightarrow {x^6} + 1 = {({x^2})^3} + 1 = ({x^2} + 1)({x^4} - {x^2} + 1)\]
Now, equation (1) can be rewritten as follows:
$ \Rightarrow \int {\frac{{({x^2} + 1)({x^4} - {x^2} + 1)}}{{{x^2} + 1}}} dx$
Here, ${x^2} + 1$ term gets cancelled and we will be left with
$ \Rightarrow \int {({x^4} - {x^2} + 1)dx} $
Applying, integral to each term, we get
$ \Rightarrow \int {{x^4}dx - \int {{x^2}dx + \int {1dx} } } $
As we know that $\int {{x^n}dx = \int {\frac{{{x^{n + 1}}}}{{n + 1}} + c,} } $ where ‘c’ is the
constant of integration. So applying the formulae, we get
$
\Rightarrow \frac{{{x^{4 + 1}}}}{{4 + 1}} - \frac{{{x^{2 + 1}}}}{{2 + 1}} + x + c[\because \int
{dx} = x] \\
\Rightarrow \frac{{{x^5}}}{5} - \frac{{{x^3}}}{3} + x + c \\
$
Hence, $\int {\frac{{{x^6} + 1}}{{{x^2} + 1}}} dx$$ = \frac{{{x^5}}}{5} - \frac{{{x^3}}}{3} + x + c$
where ‘c ‘is the constant of integration.
Note: The alternate approach for solving this question is by substitution method where $x =
\tan t$ and $dx = {\sec ^2}tdt$.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

