Answer
Verified
487.2k+ views
Hint: Here, the given integral can be solved by simplifying the integral first and
then applying the suitable formulae of integrals.
Given,
$\int {\frac{{{x^6} + 1}}{{{x^2} + 1}}} dx \to (1)$
Now, let us consider the numerator ${x^6} + 1$ as we can see it is in the form of ${a^3} +
{b^3}$ where $a = {x^2},b = 1$ .
Since, we know ${a^3} + {b^3} = (a + b)({a^2} - ab + {b^2})$.
Now, we can expand ${x^6} + 1$ as
\[ \Rightarrow {x^6} + 1 = {({x^2})^3} + 1 = ({x^2} + 1)({x^4} - {x^2} + 1)\]
Now, equation (1) can be rewritten as follows:
$ \Rightarrow \int {\frac{{({x^2} + 1)({x^4} - {x^2} + 1)}}{{{x^2} + 1}}} dx$
Here, ${x^2} + 1$ term gets cancelled and we will be left with
$ \Rightarrow \int {({x^4} - {x^2} + 1)dx} $
Applying, integral to each term, we get
$ \Rightarrow \int {{x^4}dx - \int {{x^2}dx + \int {1dx} } } $
As we know that $\int {{x^n}dx = \int {\frac{{{x^{n + 1}}}}{{n + 1}} + c,} } $ where ‘c’ is the
constant of integration. So applying the formulae, we get
$
\Rightarrow \frac{{{x^{4 + 1}}}}{{4 + 1}} - \frac{{{x^{2 + 1}}}}{{2 + 1}} + x + c[\because \int
{dx} = x] \\
\Rightarrow \frac{{{x^5}}}{5} - \frac{{{x^3}}}{3} + x + c \\
$
Hence, $\int {\frac{{{x^6} + 1}}{{{x^2} + 1}}} dx$$ = \frac{{{x^5}}}{5} - \frac{{{x^3}}}{3} + x + c$
where ‘c ‘is the constant of integration.
Note: The alternate approach for solving this question is by substitution method where $x =
\tan t$ and $dx = {\sec ^2}tdt$.
then applying the suitable formulae of integrals.
Given,
$\int {\frac{{{x^6} + 1}}{{{x^2} + 1}}} dx \to (1)$
Now, let us consider the numerator ${x^6} + 1$ as we can see it is in the form of ${a^3} +
{b^3}$ where $a = {x^2},b = 1$ .
Since, we know ${a^3} + {b^3} = (a + b)({a^2} - ab + {b^2})$.
Now, we can expand ${x^6} + 1$ as
\[ \Rightarrow {x^6} + 1 = {({x^2})^3} + 1 = ({x^2} + 1)({x^4} - {x^2} + 1)\]
Now, equation (1) can be rewritten as follows:
$ \Rightarrow \int {\frac{{({x^2} + 1)({x^4} - {x^2} + 1)}}{{{x^2} + 1}}} dx$
Here, ${x^2} + 1$ term gets cancelled and we will be left with
$ \Rightarrow \int {({x^4} - {x^2} + 1)dx} $
Applying, integral to each term, we get
$ \Rightarrow \int {{x^4}dx - \int {{x^2}dx + \int {1dx} } } $
As we know that $\int {{x^n}dx = \int {\frac{{{x^{n + 1}}}}{{n + 1}} + c,} } $ where ‘c’ is the
constant of integration. So applying the formulae, we get
$
\Rightarrow \frac{{{x^{4 + 1}}}}{{4 + 1}} - \frac{{{x^{2 + 1}}}}{{2 + 1}} + x + c[\because \int
{dx} = x] \\
\Rightarrow \frac{{{x^5}}}{5} - \frac{{{x^3}}}{3} + x + c \\
$
Hence, $\int {\frac{{{x^6} + 1}}{{{x^2} + 1}}} dx$$ = \frac{{{x^5}}}{5} - \frac{{{x^3}}}{3} + x + c$
where ‘c ‘is the constant of integration.
Note: The alternate approach for solving this question is by substitution method where $x =
\tan t$ and $dx = {\sec ^2}tdt$.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The only snake that builds a nest is a Krait b King class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Why is there a time difference of about 5 hours between class 10 social science CBSE
Which places in India experience sunrise first and class 9 social science CBSE