
Evaluate the following trigonometric equation.
$\sin \theta .{\cos ^3}\theta - \cos \theta .{\sin ^3}\theta $ is equal to?
$
{\text{A}}{\text{. }}\dfrac{{ - 1}}{4}\sin \theta \\
{\text{B}}{\text{. }}\dfrac{{\sin 4\theta }}{4} \\
{\text{C}}{\text{. }}\dfrac{{\cos 4\theta }}{4} \\
{\text{D}}{\text{. }}\dfrac{{\cos 4\theta }}{3} \\
$
Answer
620.7k+ views
Hint: For solving this complex equation first you have to take common whichever can be taken and then proceed using trigonometric results and shorten the equation as much as you can.
Complete step-by-step answer:
From given
$\sin \theta .{\cos ^3}\theta - \cos \theta .{\sin ^3}\theta $
Take $\sin \theta .\cos \theta $ common then we get
$\sin \theta .\cos \theta \left( {{{\cos }^2}\theta - {{\sin }^2}\theta } \right)$
$\left( {\because \cos 2\theta = {{\cos }^2}\theta - {{\sin }^2}\theta } \right)$ (on multiplying and dividing by 2)
$\dfrac{{2\sin \theta .\cos \theta }}{2}\left( {\cos 2\theta } \right)$
($\because \sin 2\theta = 2\sin \theta .\cos \theta $)
$\dfrac{{\sin 2\theta .\cos 2\theta }}{2}$ (on multiplying and dividing 2 we get)
$\dfrac{{2.\sin 2\theta .\cos 2\theta }}{{2.2}}$
$\left( {\because \sin 4\theta = 2\sin 2\theta .\cos 2\theta } \right)$
=$\dfrac{{\sin 4\theta }}{4}$
Hence option B is the correct option.
Note: Whenever you get this type of question the key concept of solving is you have to shorten the complex equation using trigonometric results like $\left( {\cos 2\theta = {{\cos }^2}\theta - {{\sin }^2}\theta } \right)$and use basic mathematics to proceed further.
Complete step-by-step answer:
From given
$\sin \theta .{\cos ^3}\theta - \cos \theta .{\sin ^3}\theta $
Take $\sin \theta .\cos \theta $ common then we get
$\sin \theta .\cos \theta \left( {{{\cos }^2}\theta - {{\sin }^2}\theta } \right)$
$\left( {\because \cos 2\theta = {{\cos }^2}\theta - {{\sin }^2}\theta } \right)$ (on multiplying and dividing by 2)
$\dfrac{{2\sin \theta .\cos \theta }}{2}\left( {\cos 2\theta } \right)$
($\because \sin 2\theta = 2\sin \theta .\cos \theta $)
$\dfrac{{\sin 2\theta .\cos 2\theta }}{2}$ (on multiplying and dividing 2 we get)
$\dfrac{{2.\sin 2\theta .\cos 2\theta }}{{2.2}}$
$\left( {\because \sin 4\theta = 2\sin 2\theta .\cos 2\theta } \right)$
=$\dfrac{{\sin 4\theta }}{4}$
Hence option B is the correct option.
Note: Whenever you get this type of question the key concept of solving is you have to shorten the complex equation using trigonometric results like $\left( {\cos 2\theta = {{\cos }^2}\theta - {{\sin }^2}\theta } \right)$and use basic mathematics to proceed further.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

