
Evaluate the following trigonometric equation.
$\sin \theta .{\cos ^3}\theta - \cos \theta .{\sin ^3}\theta $ is equal to?
$
{\text{A}}{\text{. }}\dfrac{{ - 1}}{4}\sin \theta \\
{\text{B}}{\text{. }}\dfrac{{\sin 4\theta }}{4} \\
{\text{C}}{\text{. }}\dfrac{{\cos 4\theta }}{4} \\
{\text{D}}{\text{. }}\dfrac{{\cos 4\theta }}{3} \\
$
Answer
608.1k+ views
Hint: For solving this complex equation first you have to take common whichever can be taken and then proceed using trigonometric results and shorten the equation as much as you can.
Complete step-by-step answer:
From given
$\sin \theta .{\cos ^3}\theta - \cos \theta .{\sin ^3}\theta $
Take $\sin \theta .\cos \theta $ common then we get
$\sin \theta .\cos \theta \left( {{{\cos }^2}\theta - {{\sin }^2}\theta } \right)$
$\left( {\because \cos 2\theta = {{\cos }^2}\theta - {{\sin }^2}\theta } \right)$ (on multiplying and dividing by 2)
$\dfrac{{2\sin \theta .\cos \theta }}{2}\left( {\cos 2\theta } \right)$
($\because \sin 2\theta = 2\sin \theta .\cos \theta $)
$\dfrac{{\sin 2\theta .\cos 2\theta }}{2}$ (on multiplying and dividing 2 we get)
$\dfrac{{2.\sin 2\theta .\cos 2\theta }}{{2.2}}$
$\left( {\because \sin 4\theta = 2\sin 2\theta .\cos 2\theta } \right)$
=$\dfrac{{\sin 4\theta }}{4}$
Hence option B is the correct option.
Note: Whenever you get this type of question the key concept of solving is you have to shorten the complex equation using trigonometric results like $\left( {\cos 2\theta = {{\cos }^2}\theta - {{\sin }^2}\theta } \right)$and use basic mathematics to proceed further.
Complete step-by-step answer:
From given
$\sin \theta .{\cos ^3}\theta - \cos \theta .{\sin ^3}\theta $
Take $\sin \theta .\cos \theta $ common then we get
$\sin \theta .\cos \theta \left( {{{\cos }^2}\theta - {{\sin }^2}\theta } \right)$
$\left( {\because \cos 2\theta = {{\cos }^2}\theta - {{\sin }^2}\theta } \right)$ (on multiplying and dividing by 2)
$\dfrac{{2\sin \theta .\cos \theta }}{2}\left( {\cos 2\theta } \right)$
($\because \sin 2\theta = 2\sin \theta .\cos \theta $)
$\dfrac{{\sin 2\theta .\cos 2\theta }}{2}$ (on multiplying and dividing 2 we get)
$\dfrac{{2.\sin 2\theta .\cos 2\theta }}{{2.2}}$
$\left( {\because \sin 4\theta = 2\sin 2\theta .\cos 2\theta } \right)$
=$\dfrac{{\sin 4\theta }}{4}$
Hence option B is the correct option.
Note: Whenever you get this type of question the key concept of solving is you have to shorten the complex equation using trigonometric results like $\left( {\cos 2\theta = {{\cos }^2}\theta - {{\sin }^2}\theta } \right)$and use basic mathematics to proceed further.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

