Answer
Verified
494.7k+ views
Hint: Use the properties of definite integrals, that is, \[\int_0^a {f(x)dx = \int_0^a {f(a - x)dx} } \] and simplify the expression to obtain the desired result.
Complete step-by-step answer:
Let us assign the integral to a variable I.
\[I = \int_0^\pi {\dfrac{{xdx}}{{1 + \cos \alpha \sin x}}} ..........(1)\]
We know the formula for definite integral as follows:
\[\int_0^a {f(x)dx = \int_0^a {f(a - x)dx} } .........(2)\]
Here, \[f(x) = \dfrac{x}{{1 + \cos \alpha \sin x}}\] and a = \[\pi \].
Hence, using formula in equation (2) to simplify equation (1), we get:
\[I = \int_0^\pi {\dfrac{{(\pi - x)dx}}{{1 + \cos \alpha \sin (\pi - x)}}} \]
We know that \[\sin (\pi - x) = \sin x\], sine is positive in the second quadrant. Hence, we get:
\[I = \int_0^\pi {\dfrac{{(\pi - x)dx}}{{1 + \cos \alpha \sin x}}} \]
Expanding the numerator, we have:
\[I = \pi \int_0^\pi {\dfrac{{dx}}{{1 + \cos \alpha \sin x}}} - \int_0^\pi {\dfrac{{xdx}}{{1 + \cos \alpha \sin x}}} \]
The second term in the expression is nothing but I itself, hence, using equation(1), we have:
\[I = \pi \int_0^\pi {\dfrac{{dx}}{{1 + \cos \alpha \sin x}}} - I\]
Solving for I, we get:
\[2I = \pi \int_0^\pi {\dfrac{{dx}}{{1 + \cos \alpha \sin x}}} \]
\[I = \dfrac{\pi }{2}\int_0^\pi {\dfrac{{dx}}{{1 + \cos \alpha \sin x}}} .........(3)\]
Let us consider the integral term alone in equation (3).
\[I' = \int_0^\pi {\dfrac{{dx}}{{1 + \cos \alpha \sin x}}} .........(4)\]
Now, we know that, \[\sin 2x = \dfrac{{2\tan x}}{{1 + {{\tan }^2}x}}\], using this formula for sin(x) in equation (4), we get:
\[I' = \int_0^\pi {\dfrac{{\left( {1 + {{\tan }^2}\dfrac{x}{2}} \right)dx}}{{1 + {{\tan }^2}\dfrac{x}{2} + \cos \alpha .2\tan \dfrac{x}{2}}}} ........(5)\]
Let us use substitution of variables as follows:
\[\tan \dfrac{x}{2} = \theta \]
\[{\sec ^2}\dfrac{x}{2}.\dfrac{1}{2}.dx = d\theta \]
\[\left( {1 + {{\tan }^2}\dfrac{x}{2}} \right)dx = 2d\theta \]
The limits also change as follows:
\[x \to 0 \Rightarrow \theta \to 0\]
\[x \to \pi \Rightarrow \theta \to \infty \]
Using all this changes in equation (5), we get:
\[I' = \int_0^\infty {\dfrac{{2d\theta }}{{1 + {\theta ^2} + 2\theta \cos \alpha }}} \]
Expressing the denominator as sum of squares using completing square method, we get:
\[I' = \int_0^\infty {\dfrac{{2d\theta }}{{{{(\theta + \cos \alpha )}^2} + (1 - {{\cos }^2}\alpha )}}} \]
We know that \[1 - {\cos ^2}x = {\sin ^2}x\], hence we have:
\[I' = 2\int_0^\infty {\dfrac{{d\theta }}{{{{(\theta + \cos \alpha )}^2} + {{\sin }^2}\alpha }}} \]
We know that \[\int {\dfrac{{dx}}{{{{(x)}^2} + {a^2}}} = \dfrac{1}{a}\tan {}^{ - 1}\dfrac{x}{a}} \], hence we have:
\[I' = \left. {\dfrac{2}{{\sin \alpha }}{{\tan }^{ - 1}}\left( {\dfrac{{\theta + \cos \alpha }}{{\sin \alpha }}} \right)} \right|_0^\infty \]
Evaluating the limits, we have:
\[I' = \dfrac{2}{{\sin \alpha }}\left( {{{\tan }^{ - 1}}\left( \infty \right) - {{\tan }^{ - 1}}\left( {\dfrac{{\cos \alpha }}{{\sin \alpha }}} \right)} \right)\]
We know that, \[\dfrac{{\cos \alpha }}{{\sin \alpha }} = \cot \alpha \], hence we get:
\[I' = \dfrac{2}{{\sin \alpha }}\left( {{{\tan }^{ - 1}}\left( \infty \right) - {{\tan }^{ - 1}}\left( {\cot \alpha } \right)} \right)\]
We also know that, \[{\tan ^{ - 1}}\left( \infty \right) = \dfrac{\pi }{2}\] and \[\cot \alpha = \tan \left( {\dfrac{\pi }{2} - \alpha } \right)\], hence we have:
\[I' = \dfrac{2}{{\sin \alpha }}\left( {\dfrac{\pi }{2} - {{\tan }^{ - 1}}\left( {\tan \left( {\dfrac{\pi }{2} - \alpha } \right)} \right)} \right)\]
Since, \[{\tan ^{ - 1}}\left( {\tan \left( x \right)} \right) = x\], we have:
\[I' = \dfrac{2}{{\sin \alpha }}\left( {\dfrac{\pi }{2} - \left( {\dfrac{\pi }{2} - \alpha } \right)} \right)\]
Simplifying, we get:
\[I' = \dfrac{{2\alpha }}{{\sin \alpha }}.........(6)\]
Using equation (6) in equation (3), we get:
\[I = \dfrac{\pi }{2} \times \dfrac{{2\alpha }}{{\sin \alpha }}\]
\[I = \dfrac{{\pi \alpha }}{{\sin \alpha }}\]
Hence, the value of the integral is \[I = \dfrac{{\pi \alpha }}{{\sin \alpha }}\].
Note: You might make mistake in the integration of \[\int {\dfrac{{dx}}{{{{(x)}^2} + {a^2}}} = \dfrac{1}{a}\tan {}^{ - 1}\dfrac{x}{a}} \] formula by missing out the \[\dfrac{1}{a}\] term. It is necessary to simplify the integral completely and not leave the answer in terms of \[{\tan ^{ - 1}}(\cot \alpha )\].
Complete step-by-step answer:
Let us assign the integral to a variable I.
\[I = \int_0^\pi {\dfrac{{xdx}}{{1 + \cos \alpha \sin x}}} ..........(1)\]
We know the formula for definite integral as follows:
\[\int_0^a {f(x)dx = \int_0^a {f(a - x)dx} } .........(2)\]
Here, \[f(x) = \dfrac{x}{{1 + \cos \alpha \sin x}}\] and a = \[\pi \].
Hence, using formula in equation (2) to simplify equation (1), we get:
\[I = \int_0^\pi {\dfrac{{(\pi - x)dx}}{{1 + \cos \alpha \sin (\pi - x)}}} \]
We know that \[\sin (\pi - x) = \sin x\], sine is positive in the second quadrant. Hence, we get:
\[I = \int_0^\pi {\dfrac{{(\pi - x)dx}}{{1 + \cos \alpha \sin x}}} \]
Expanding the numerator, we have:
\[I = \pi \int_0^\pi {\dfrac{{dx}}{{1 + \cos \alpha \sin x}}} - \int_0^\pi {\dfrac{{xdx}}{{1 + \cos \alpha \sin x}}} \]
The second term in the expression is nothing but I itself, hence, using equation(1), we have:
\[I = \pi \int_0^\pi {\dfrac{{dx}}{{1 + \cos \alpha \sin x}}} - I\]
Solving for I, we get:
\[2I = \pi \int_0^\pi {\dfrac{{dx}}{{1 + \cos \alpha \sin x}}} \]
\[I = \dfrac{\pi }{2}\int_0^\pi {\dfrac{{dx}}{{1 + \cos \alpha \sin x}}} .........(3)\]
Let us consider the integral term alone in equation (3).
\[I' = \int_0^\pi {\dfrac{{dx}}{{1 + \cos \alpha \sin x}}} .........(4)\]
Now, we know that, \[\sin 2x = \dfrac{{2\tan x}}{{1 + {{\tan }^2}x}}\], using this formula for sin(x) in equation (4), we get:
\[I' = \int_0^\pi {\dfrac{{\left( {1 + {{\tan }^2}\dfrac{x}{2}} \right)dx}}{{1 + {{\tan }^2}\dfrac{x}{2} + \cos \alpha .2\tan \dfrac{x}{2}}}} ........(5)\]
Let us use substitution of variables as follows:
\[\tan \dfrac{x}{2} = \theta \]
\[{\sec ^2}\dfrac{x}{2}.\dfrac{1}{2}.dx = d\theta \]
\[\left( {1 + {{\tan }^2}\dfrac{x}{2}} \right)dx = 2d\theta \]
The limits also change as follows:
\[x \to 0 \Rightarrow \theta \to 0\]
\[x \to \pi \Rightarrow \theta \to \infty \]
Using all this changes in equation (5), we get:
\[I' = \int_0^\infty {\dfrac{{2d\theta }}{{1 + {\theta ^2} + 2\theta \cos \alpha }}} \]
Expressing the denominator as sum of squares using completing square method, we get:
\[I' = \int_0^\infty {\dfrac{{2d\theta }}{{{{(\theta + \cos \alpha )}^2} + (1 - {{\cos }^2}\alpha )}}} \]
We know that \[1 - {\cos ^2}x = {\sin ^2}x\], hence we have:
\[I' = 2\int_0^\infty {\dfrac{{d\theta }}{{{{(\theta + \cos \alpha )}^2} + {{\sin }^2}\alpha }}} \]
We know that \[\int {\dfrac{{dx}}{{{{(x)}^2} + {a^2}}} = \dfrac{1}{a}\tan {}^{ - 1}\dfrac{x}{a}} \], hence we have:
\[I' = \left. {\dfrac{2}{{\sin \alpha }}{{\tan }^{ - 1}}\left( {\dfrac{{\theta + \cos \alpha }}{{\sin \alpha }}} \right)} \right|_0^\infty \]
Evaluating the limits, we have:
\[I' = \dfrac{2}{{\sin \alpha }}\left( {{{\tan }^{ - 1}}\left( \infty \right) - {{\tan }^{ - 1}}\left( {\dfrac{{\cos \alpha }}{{\sin \alpha }}} \right)} \right)\]
We know that, \[\dfrac{{\cos \alpha }}{{\sin \alpha }} = \cot \alpha \], hence we get:
\[I' = \dfrac{2}{{\sin \alpha }}\left( {{{\tan }^{ - 1}}\left( \infty \right) - {{\tan }^{ - 1}}\left( {\cot \alpha } \right)} \right)\]
We also know that, \[{\tan ^{ - 1}}\left( \infty \right) = \dfrac{\pi }{2}\] and \[\cot \alpha = \tan \left( {\dfrac{\pi }{2} - \alpha } \right)\], hence we have:
\[I' = \dfrac{2}{{\sin \alpha }}\left( {\dfrac{\pi }{2} - {{\tan }^{ - 1}}\left( {\tan \left( {\dfrac{\pi }{2} - \alpha } \right)} \right)} \right)\]
Since, \[{\tan ^{ - 1}}\left( {\tan \left( x \right)} \right) = x\], we have:
\[I' = \dfrac{2}{{\sin \alpha }}\left( {\dfrac{\pi }{2} - \left( {\dfrac{\pi }{2} - \alpha } \right)} \right)\]
Simplifying, we get:
\[I' = \dfrac{{2\alpha }}{{\sin \alpha }}.........(6)\]
Using equation (6) in equation (3), we get:
\[I = \dfrac{\pi }{2} \times \dfrac{{2\alpha }}{{\sin \alpha }}\]
\[I = \dfrac{{\pi \alpha }}{{\sin \alpha }}\]
Hence, the value of the integral is \[I = \dfrac{{\pi \alpha }}{{\sin \alpha }}\].
Note: You might make mistake in the integration of \[\int {\dfrac{{dx}}{{{{(x)}^2} + {a^2}}} = \dfrac{1}{a}\tan {}^{ - 1}\dfrac{x}{a}} \] formula by missing out the \[\dfrac{1}{a}\] term. It is necessary to simplify the integral completely and not leave the answer in terms of \[{\tan ^{ - 1}}(\cot \alpha )\].
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is pollution? How many types of pollution? Define it