
Evaluate the following integral: \[\int_0^\pi {\dfrac{{xdx}}{{1 + \cos \alpha \sin x}}} \] where \[0 < \alpha < \pi \].
Answer
606.3k+ views
Hint: Use the properties of definite integrals, that is, \[\int_0^a {f(x)dx = \int_0^a {f(a - x)dx} } \] and simplify the expression to obtain the desired result.
Complete step-by-step answer:
Let us assign the integral to a variable I.
\[I = \int_0^\pi {\dfrac{{xdx}}{{1 + \cos \alpha \sin x}}} ..........(1)\]
We know the formula for definite integral as follows:
\[\int_0^a {f(x)dx = \int_0^a {f(a - x)dx} } .........(2)\]
Here, \[f(x) = \dfrac{x}{{1 + \cos \alpha \sin x}}\] and a = \[\pi \].
Hence, using formula in equation (2) to simplify equation (1), we get:
\[I = \int_0^\pi {\dfrac{{(\pi - x)dx}}{{1 + \cos \alpha \sin (\pi - x)}}} \]
We know that \[\sin (\pi - x) = \sin x\], sine is positive in the second quadrant. Hence, we get:
\[I = \int_0^\pi {\dfrac{{(\pi - x)dx}}{{1 + \cos \alpha \sin x}}} \]
Expanding the numerator, we have:
\[I = \pi \int_0^\pi {\dfrac{{dx}}{{1 + \cos \alpha \sin x}}} - \int_0^\pi {\dfrac{{xdx}}{{1 + \cos \alpha \sin x}}} \]
The second term in the expression is nothing but I itself, hence, using equation(1), we have:
\[I = \pi \int_0^\pi {\dfrac{{dx}}{{1 + \cos \alpha \sin x}}} - I\]
Solving for I, we get:
\[2I = \pi \int_0^\pi {\dfrac{{dx}}{{1 + \cos \alpha \sin x}}} \]
\[I = \dfrac{\pi }{2}\int_0^\pi {\dfrac{{dx}}{{1 + \cos \alpha \sin x}}} .........(3)\]
Let us consider the integral term alone in equation (3).
\[I' = \int_0^\pi {\dfrac{{dx}}{{1 + \cos \alpha \sin x}}} .........(4)\]
Now, we know that, \[\sin 2x = \dfrac{{2\tan x}}{{1 + {{\tan }^2}x}}\], using this formula for sin(x) in equation (4), we get:
\[I' = \int_0^\pi {\dfrac{{\left( {1 + {{\tan }^2}\dfrac{x}{2}} \right)dx}}{{1 + {{\tan }^2}\dfrac{x}{2} + \cos \alpha .2\tan \dfrac{x}{2}}}} ........(5)\]
Let us use substitution of variables as follows:
\[\tan \dfrac{x}{2} = \theta \]
\[{\sec ^2}\dfrac{x}{2}.\dfrac{1}{2}.dx = d\theta \]
\[\left( {1 + {{\tan }^2}\dfrac{x}{2}} \right)dx = 2d\theta \]
The limits also change as follows:
\[x \to 0 \Rightarrow \theta \to 0\]
\[x \to \pi \Rightarrow \theta \to \infty \]
Using all this changes in equation (5), we get:
\[I' = \int_0^\infty {\dfrac{{2d\theta }}{{1 + {\theta ^2} + 2\theta \cos \alpha }}} \]
Expressing the denominator as sum of squares using completing square method, we get:
\[I' = \int_0^\infty {\dfrac{{2d\theta }}{{{{(\theta + \cos \alpha )}^2} + (1 - {{\cos }^2}\alpha )}}} \]
We know that \[1 - {\cos ^2}x = {\sin ^2}x\], hence we have:
\[I' = 2\int_0^\infty {\dfrac{{d\theta }}{{{{(\theta + \cos \alpha )}^2} + {{\sin }^2}\alpha }}} \]
We know that \[\int {\dfrac{{dx}}{{{{(x)}^2} + {a^2}}} = \dfrac{1}{a}\tan {}^{ - 1}\dfrac{x}{a}} \], hence we have:
\[I' = \left. {\dfrac{2}{{\sin \alpha }}{{\tan }^{ - 1}}\left( {\dfrac{{\theta + \cos \alpha }}{{\sin \alpha }}} \right)} \right|_0^\infty \]
Evaluating the limits, we have:
\[I' = \dfrac{2}{{\sin \alpha }}\left( {{{\tan }^{ - 1}}\left( \infty \right) - {{\tan }^{ - 1}}\left( {\dfrac{{\cos \alpha }}{{\sin \alpha }}} \right)} \right)\]
We know that, \[\dfrac{{\cos \alpha }}{{\sin \alpha }} = \cot \alpha \], hence we get:
\[I' = \dfrac{2}{{\sin \alpha }}\left( {{{\tan }^{ - 1}}\left( \infty \right) - {{\tan }^{ - 1}}\left( {\cot \alpha } \right)} \right)\]
We also know that, \[{\tan ^{ - 1}}\left( \infty \right) = \dfrac{\pi }{2}\] and \[\cot \alpha = \tan \left( {\dfrac{\pi }{2} - \alpha } \right)\], hence we have:
\[I' = \dfrac{2}{{\sin \alpha }}\left( {\dfrac{\pi }{2} - {{\tan }^{ - 1}}\left( {\tan \left( {\dfrac{\pi }{2} - \alpha } \right)} \right)} \right)\]
Since, \[{\tan ^{ - 1}}\left( {\tan \left( x \right)} \right) = x\], we have:
\[I' = \dfrac{2}{{\sin \alpha }}\left( {\dfrac{\pi }{2} - \left( {\dfrac{\pi }{2} - \alpha } \right)} \right)\]
Simplifying, we get:
\[I' = \dfrac{{2\alpha }}{{\sin \alpha }}.........(6)\]
Using equation (6) in equation (3), we get:
\[I = \dfrac{\pi }{2} \times \dfrac{{2\alpha }}{{\sin \alpha }}\]
\[I = \dfrac{{\pi \alpha }}{{\sin \alpha }}\]
Hence, the value of the integral is \[I = \dfrac{{\pi \alpha }}{{\sin \alpha }}\].
Note: You might make mistake in the integration of \[\int {\dfrac{{dx}}{{{{(x)}^2} + {a^2}}} = \dfrac{1}{a}\tan {}^{ - 1}\dfrac{x}{a}} \] formula by missing out the \[\dfrac{1}{a}\] term. It is necessary to simplify the integral completely and not leave the answer in terms of \[{\tan ^{ - 1}}(\cot \alpha )\].
Complete step-by-step answer:
Let us assign the integral to a variable I.
\[I = \int_0^\pi {\dfrac{{xdx}}{{1 + \cos \alpha \sin x}}} ..........(1)\]
We know the formula for definite integral as follows:
\[\int_0^a {f(x)dx = \int_0^a {f(a - x)dx} } .........(2)\]
Here, \[f(x) = \dfrac{x}{{1 + \cos \alpha \sin x}}\] and a = \[\pi \].
Hence, using formula in equation (2) to simplify equation (1), we get:
\[I = \int_0^\pi {\dfrac{{(\pi - x)dx}}{{1 + \cos \alpha \sin (\pi - x)}}} \]
We know that \[\sin (\pi - x) = \sin x\], sine is positive in the second quadrant. Hence, we get:
\[I = \int_0^\pi {\dfrac{{(\pi - x)dx}}{{1 + \cos \alpha \sin x}}} \]
Expanding the numerator, we have:
\[I = \pi \int_0^\pi {\dfrac{{dx}}{{1 + \cos \alpha \sin x}}} - \int_0^\pi {\dfrac{{xdx}}{{1 + \cos \alpha \sin x}}} \]
The second term in the expression is nothing but I itself, hence, using equation(1), we have:
\[I = \pi \int_0^\pi {\dfrac{{dx}}{{1 + \cos \alpha \sin x}}} - I\]
Solving for I, we get:
\[2I = \pi \int_0^\pi {\dfrac{{dx}}{{1 + \cos \alpha \sin x}}} \]
\[I = \dfrac{\pi }{2}\int_0^\pi {\dfrac{{dx}}{{1 + \cos \alpha \sin x}}} .........(3)\]
Let us consider the integral term alone in equation (3).
\[I' = \int_0^\pi {\dfrac{{dx}}{{1 + \cos \alpha \sin x}}} .........(4)\]
Now, we know that, \[\sin 2x = \dfrac{{2\tan x}}{{1 + {{\tan }^2}x}}\], using this formula for sin(x) in equation (4), we get:
\[I' = \int_0^\pi {\dfrac{{\left( {1 + {{\tan }^2}\dfrac{x}{2}} \right)dx}}{{1 + {{\tan }^2}\dfrac{x}{2} + \cos \alpha .2\tan \dfrac{x}{2}}}} ........(5)\]
Let us use substitution of variables as follows:
\[\tan \dfrac{x}{2} = \theta \]
\[{\sec ^2}\dfrac{x}{2}.\dfrac{1}{2}.dx = d\theta \]
\[\left( {1 + {{\tan }^2}\dfrac{x}{2}} \right)dx = 2d\theta \]
The limits also change as follows:
\[x \to 0 \Rightarrow \theta \to 0\]
\[x \to \pi \Rightarrow \theta \to \infty \]
Using all this changes in equation (5), we get:
\[I' = \int_0^\infty {\dfrac{{2d\theta }}{{1 + {\theta ^2} + 2\theta \cos \alpha }}} \]
Expressing the denominator as sum of squares using completing square method, we get:
\[I' = \int_0^\infty {\dfrac{{2d\theta }}{{{{(\theta + \cos \alpha )}^2} + (1 - {{\cos }^2}\alpha )}}} \]
We know that \[1 - {\cos ^2}x = {\sin ^2}x\], hence we have:
\[I' = 2\int_0^\infty {\dfrac{{d\theta }}{{{{(\theta + \cos \alpha )}^2} + {{\sin }^2}\alpha }}} \]
We know that \[\int {\dfrac{{dx}}{{{{(x)}^2} + {a^2}}} = \dfrac{1}{a}\tan {}^{ - 1}\dfrac{x}{a}} \], hence we have:
\[I' = \left. {\dfrac{2}{{\sin \alpha }}{{\tan }^{ - 1}}\left( {\dfrac{{\theta + \cos \alpha }}{{\sin \alpha }}} \right)} \right|_0^\infty \]
Evaluating the limits, we have:
\[I' = \dfrac{2}{{\sin \alpha }}\left( {{{\tan }^{ - 1}}\left( \infty \right) - {{\tan }^{ - 1}}\left( {\dfrac{{\cos \alpha }}{{\sin \alpha }}} \right)} \right)\]
We know that, \[\dfrac{{\cos \alpha }}{{\sin \alpha }} = \cot \alpha \], hence we get:
\[I' = \dfrac{2}{{\sin \alpha }}\left( {{{\tan }^{ - 1}}\left( \infty \right) - {{\tan }^{ - 1}}\left( {\cot \alpha } \right)} \right)\]
We also know that, \[{\tan ^{ - 1}}\left( \infty \right) = \dfrac{\pi }{2}\] and \[\cot \alpha = \tan \left( {\dfrac{\pi }{2} - \alpha } \right)\], hence we have:
\[I' = \dfrac{2}{{\sin \alpha }}\left( {\dfrac{\pi }{2} - {{\tan }^{ - 1}}\left( {\tan \left( {\dfrac{\pi }{2} - \alpha } \right)} \right)} \right)\]
Since, \[{\tan ^{ - 1}}\left( {\tan \left( x \right)} \right) = x\], we have:
\[I' = \dfrac{2}{{\sin \alpha }}\left( {\dfrac{\pi }{2} - \left( {\dfrac{\pi }{2} - \alpha } \right)} \right)\]
Simplifying, we get:
\[I' = \dfrac{{2\alpha }}{{\sin \alpha }}.........(6)\]
Using equation (6) in equation (3), we get:
\[I = \dfrac{\pi }{2} \times \dfrac{{2\alpha }}{{\sin \alpha }}\]
\[I = \dfrac{{\pi \alpha }}{{\sin \alpha }}\]
Hence, the value of the integral is \[I = \dfrac{{\pi \alpha }}{{\sin \alpha }}\].
Note: You might make mistake in the integration of \[\int {\dfrac{{dx}}{{{{(x)}^2} + {a^2}}} = \dfrac{1}{a}\tan {}^{ - 1}\dfrac{x}{a}} \] formula by missing out the \[\dfrac{1}{a}\] term. It is necessary to simplify the integral completely and not leave the answer in terms of \[{\tan ^{ - 1}}(\cot \alpha )\].
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

