
Evaluate the following definite integral
$\int\limits_{0}^{\dfrac{\pi }{4}}{\left( \sin x+\cos x \right)dx}$
Answer
606.3k+ views
Hint: Try to solve this question of definite integral using the formulas of indefinite integral. Distribute the integral on the two functions and then integrate the two functions indefinitely. Then apply the limits.
Complete step-by-step answer:
Before proceeding with the question, we must know all the formulas that will be required to solve this question.
In indefinite integrals, we have a formula which we can use to integrate $\sin x$ function. That formula is,
$\int{\sin xdx=-\cos x}..............\left( 1 \right)$
Also, in indefinite integrals, we have a formula which we can use to integrate $\cos x$ function. That formula is,
$\int{\cos xdx=\sin x}..............\left( 2 \right)$
In the question, we have to evaluate the definite integral $\int\limits_{0}^{\dfrac{\pi }{4}}{\left( \sin x+\cos x \right)dx}$. We may notice that we cannot use any property of definite integral to solve this question. Hence, we will solve this question by integrating it using the formulas of indefinite integration.
Since integral function can be distributed over addition, distributing the integral on the two functions, we get,
$\int\limits_{0}^{\dfrac{\pi }{4}}{\sin xdx}+\int\limits_{0}^{\dfrac{\pi }{4}}{\cos xdx}$
Substituting $\int{\sin xdx=-\cos x}$ from equation $\left( 1 \right)$ and $\int{\cos xdx=\sin x}$ equation $\left( 2 \right)$ in the above integration, we get,
$\left[ -\cos x \right]+\left[ \sin x \right]$
Applying limits $0$to $\dfrac{\pi }{4}$, we get
$\begin{align}
& \left[ -\cos x \right]_{0}^{{}^{\pi }/{}_{4}}+\left[ \sin x \right]_{0}^{{}^{\pi }/{}_{4}} \\
& \Rightarrow \left( -\cos \dfrac{\pi }{4}-\left( -\cos 0 \right) \right)+\left( \sin \dfrac{\pi }{4}-\sin 0 \right)...............\left( 3 \right) \\
\end{align}$
From trigonometry, we have some formulas, which are listed below,
\[\begin{align}
& \cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}.............\left( 4 \right) \\
& \sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}.............\left( 5 \right) \\
& \cos 0=1...............\left( 6 \right) \\
& \sin 0=0................\left( 7 \right) \\
\end{align}\]
Substituting \[\cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}\] from equation $\left( 4 \right)$, \[\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}\] from equation $\left( 5 \right)$, $\cos 0=1$ from equation $\left( 6 \right)$ and $\sin 0=0$ from equation $\left( 7 \right)$ in equation $\left( 3 \right)$, we get,
$\begin{align}
& \left( -\dfrac{1}{\sqrt{2}}-\left( -1 \right) \right)+\left( \dfrac{1}{\sqrt{2}}-0 \right) \\
& \Rightarrow \left( 1-\dfrac{1}{\sqrt{2}} \right)+\left( \dfrac{1}{\sqrt{2}} \right) \\
& \Rightarrow 1 \\
\end{align}$
Hence, the answer of the integration $\int\limits_{0}^{\dfrac{\pi }{4}}{\left( \sin x+\cos x \right)dx}$ is $1$.
Note: There is a possibility that one may commit a mistake while writing the formula of the integral of $\sin x$. There is always a confusion regarding the sign while integrating $\sin x$. There is a possibility that one may write the formula as $\int{\sin xdx=\cos x}$ instead of $\int{\sin xdx=-\cos x}$ which may lead to an incorrect answer.
Complete step-by-step answer:
Before proceeding with the question, we must know all the formulas that will be required to solve this question.
In indefinite integrals, we have a formula which we can use to integrate $\sin x$ function. That formula is,
$\int{\sin xdx=-\cos x}..............\left( 1 \right)$
Also, in indefinite integrals, we have a formula which we can use to integrate $\cos x$ function. That formula is,
$\int{\cos xdx=\sin x}..............\left( 2 \right)$
In the question, we have to evaluate the definite integral $\int\limits_{0}^{\dfrac{\pi }{4}}{\left( \sin x+\cos x \right)dx}$. We may notice that we cannot use any property of definite integral to solve this question. Hence, we will solve this question by integrating it using the formulas of indefinite integration.
Since integral function can be distributed over addition, distributing the integral on the two functions, we get,
$\int\limits_{0}^{\dfrac{\pi }{4}}{\sin xdx}+\int\limits_{0}^{\dfrac{\pi }{4}}{\cos xdx}$
Substituting $\int{\sin xdx=-\cos x}$ from equation $\left( 1 \right)$ and $\int{\cos xdx=\sin x}$ equation $\left( 2 \right)$ in the above integration, we get,
$\left[ -\cos x \right]+\left[ \sin x \right]$
Applying limits $0$to $\dfrac{\pi }{4}$, we get
$\begin{align}
& \left[ -\cos x \right]_{0}^{{}^{\pi }/{}_{4}}+\left[ \sin x \right]_{0}^{{}^{\pi }/{}_{4}} \\
& \Rightarrow \left( -\cos \dfrac{\pi }{4}-\left( -\cos 0 \right) \right)+\left( \sin \dfrac{\pi }{4}-\sin 0 \right)...............\left( 3 \right) \\
\end{align}$
From trigonometry, we have some formulas, which are listed below,
\[\begin{align}
& \cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}.............\left( 4 \right) \\
& \sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}.............\left( 5 \right) \\
& \cos 0=1...............\left( 6 \right) \\
& \sin 0=0................\left( 7 \right) \\
\end{align}\]
Substituting \[\cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}\] from equation $\left( 4 \right)$, \[\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}\] from equation $\left( 5 \right)$, $\cos 0=1$ from equation $\left( 6 \right)$ and $\sin 0=0$ from equation $\left( 7 \right)$ in equation $\left( 3 \right)$, we get,
$\begin{align}
& \left( -\dfrac{1}{\sqrt{2}}-\left( -1 \right) \right)+\left( \dfrac{1}{\sqrt{2}}-0 \right) \\
& \Rightarrow \left( 1-\dfrac{1}{\sqrt{2}} \right)+\left( \dfrac{1}{\sqrt{2}} \right) \\
& \Rightarrow 1 \\
\end{align}$
Hence, the answer of the integration $\int\limits_{0}^{\dfrac{\pi }{4}}{\left( \sin x+\cos x \right)dx}$ is $1$.
Note: There is a possibility that one may commit a mistake while writing the formula of the integral of $\sin x$. There is always a confusion regarding the sign while integrating $\sin x$. There is a possibility that one may write the formula as $\int{\sin xdx=\cos x}$ instead of $\int{\sin xdx=-\cos x}$ which may lead to an incorrect answer.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

