Evaluate the following(a) \[\sin \left[ {\dfrac{\pi }{3} - {{\sin }^{ - 1}}\left( { - \dfrac{1}{2}} \right)} \right]\](b) \[\sin \left[ {\dfrac{\pi }{2} - {{\sin }^{ - 1}}\left( { - \dfrac{{\sqrt 3 }}{2}} \right)} \right]\]
Answer
Verified
508.5k+ views
Hint: Make use of the formula of inverse trigonometric functions and solve this.
Complete step by step solution:
(a) \[\sin \left[ {\dfrac{\pi }{3} - {{\sin }^{ - 1}}\left( { - \dfrac{1}{2}} \right)} \right]\]
To solve this let's make use of the formula of ${\sin ^{ - 1}}( - x) = - {\sin ^{ - 1}}x$
In this question ,we have $ - {\sin ^{ - 1}}\left( { - \dfrac{1}{2}} \right)$ , so on comparing with
the formula we can write this as $ - {\sin ^{ - 1}}\left( { - \dfrac{1}{2}} \right)$=(-)(-)${\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right)$ =${\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right)$
So, now the equation will become $\sin \left( {\dfrac{\pi }{3} + {{\sin }^{ - 1}}\left( {\dfrac{1}{2}} \right)} \right)$
We know the value of ${\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \dfrac{\pi }{6}$
So, now the equation will become $\sin \left( {\dfrac{\pi }{3} + \dfrac{\pi }{6}} \right) = \sin \dfrac{\pi }{2} = 1$
So, therefore the value of \[\sin \left[ {\dfrac{\pi }{3} - {{\sin }^{ - 1}}\left( { - \dfrac{1}{2}} \right)} \right]\]=1
(b) \[\sin \left[ {\dfrac{\pi }{2} - {{\sin }^{ - 1}}\left( { - \dfrac{{\sqrt 3 }}{2}} \right)} \right]\]
To solve this let's make use of the formula of ${\sin ^{ - 1}}( - x) = - {\sin ^{ - 1}}x$
In the question we have ${\sin ^{ - 1}}\left( { - \dfrac{{\sqrt 3 }}{2}} \right)$, so on comparing this with the formula, we can write this as ${\sin ^{ - 1}}\left( { - \dfrac{{\sqrt 3 }}{2}} \right) = ( - )( - ){\sin ^{ - 1}}\left( {\dfrac{{\sqrt 3 }}{2}} \right)$
So, now we get the equation as \[\sin \left[ {\dfrac{\pi }{2} + {{\sin }^{ - 1}}\left( {\dfrac{{\sqrt 3 }}{2}} \right)} \right]\]
We know that the value of ${\sin ^{ - 1}}\left( {\dfrac{{\sqrt 3 }}{2}} \right) = \dfrac{\pi }{3}$
So, now we can write the equation as $\sin \left( {\dfrac{\pi }{2} + \dfrac{\pi }{3}} \right) = \cos \dfrac{\pi }{3} = \dfrac{1}{2}$
(Since the value of $\sin \left( {\dfrac{\pi }{2} + \theta } \right) = \cos \theta $ )
So, therefore the value of \[\sin \left[ {\dfrac{\pi }{2} - {{\sin }^{ - 1}}\left( { - \dfrac{{\sqrt 3 }}{2}} \right)} \right]\]=$\dfrac{1}{2}$
Note: When we are solving these kind of problems make use of the appropriate formula of inverse trigonometric functions to solve, also take care of the sign associated with the functions.
Recently Updated Pages
One difference between a Formal Letter and an informal class null english null
Write the main reasons for the stability of colloidal class 11 chemistry CBSE
Class 11 Question and Answer - Your Ultimate Solutions Guide
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
In China rose the flowers are A Zygomorphic epigynous class 11 biology CBSE
What is Environment class 11 chemistry CBSE
Nucleolus is present in which part of the cell class 11 biology CBSE