Evaluate the following(a) \[\sin \left[ {\dfrac{\pi }{3} - {{\sin }^{ - 1}}\left( { - \dfrac{1}{2}} \right)} \right]\](b) \[\sin \left[ {\dfrac{\pi }{2} - {{\sin }^{ - 1}}\left( { - \dfrac{{\sqrt 3 }}{2}} \right)} \right]\]
Answer
384.9k+ views
Hint: Make use of the formula of inverse trigonometric functions and solve this.
Complete step by step solution:
(a) \[\sin \left[ {\dfrac{\pi }{3} - {{\sin }^{ - 1}}\left( { - \dfrac{1}{2}} \right)} \right]\]
To solve this let's make use of the formula of ${\sin ^{ - 1}}( - x) = - {\sin ^{ - 1}}x$
In this question ,we have $ - {\sin ^{ - 1}}\left( { - \dfrac{1}{2}} \right)$ , so on comparing with
the formula we can write this as $ - {\sin ^{ - 1}}\left( { - \dfrac{1}{2}} \right)$=(-)(-)${\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right)$ =${\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right)$
So, now the equation will become $\sin \left( {\dfrac{\pi }{3} + {{\sin }^{ - 1}}\left( {\dfrac{1}{2}} \right)} \right)$
We know the value of ${\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \dfrac{\pi }{6}$
So, now the equation will become $\sin \left( {\dfrac{\pi }{3} + \dfrac{\pi }{6}} \right) = \sin \dfrac{\pi }{2} = 1$
So, therefore the value of \[\sin \left[ {\dfrac{\pi }{3} - {{\sin }^{ - 1}}\left( { - \dfrac{1}{2}} \right)} \right]\]=1
(b) \[\sin \left[ {\dfrac{\pi }{2} - {{\sin }^{ - 1}}\left( { - \dfrac{{\sqrt 3 }}{2}} \right)} \right]\]
To solve this let's make use of the formula of ${\sin ^{ - 1}}( - x) = - {\sin ^{ - 1}}x$
In the question we have ${\sin ^{ - 1}}\left( { - \dfrac{{\sqrt 3 }}{2}} \right)$, so on comparing this with the formula, we can write this as ${\sin ^{ - 1}}\left( { - \dfrac{{\sqrt 3 }}{2}} \right) = ( - )( - ){\sin ^{ - 1}}\left( {\dfrac{{\sqrt 3 }}{2}} \right)$
So, now we get the equation as \[\sin \left[ {\dfrac{\pi }{2} + {{\sin }^{ - 1}}\left( {\dfrac{{\sqrt 3 }}{2}} \right)} \right]\]
We know that the value of ${\sin ^{ - 1}}\left( {\dfrac{{\sqrt 3 }}{2}} \right) = \dfrac{\pi }{3}$
So, now we can write the equation as $\sin \left( {\dfrac{\pi }{2} + \dfrac{\pi }{3}} \right) = \cos \dfrac{\pi }{3} = \dfrac{1}{2}$
(Since the value of $\sin \left( {\dfrac{\pi }{2} + \theta } \right) = \cos \theta $ )
So, therefore the value of \[\sin \left[ {\dfrac{\pi }{2} - {{\sin }^{ - 1}}\left( { - \dfrac{{\sqrt 3 }}{2}} \right)} \right]\]=$\dfrac{1}{2}$
Note: When we are solving these kind of problems make use of the appropriate formula of inverse trigonometric functions to solve, also take care of the sign associated with the functions.
Recently Updated Pages
Which of the following would not be a valid reason class 11 biology CBSE

What is meant by monosporic development of female class 11 biology CBSE

Draw labelled diagram of the following i Gram seed class 11 biology CBSE

Explain with the suitable examples the different types class 11 biology CBSE

How is pinnately compound leaf different from palmately class 11 biology CBSE

Match the following Column I Column I A Chlamydomonas class 11 biology CBSE

Trending doubts
Which one of the following places is unlikely to be class 8 physics CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is 1 divided by 0 class 8 maths CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

What is pollution? How many types of pollution? Define it

Difference Between Plant Cell and Animal Cell

Find the HCF and LCM of 6 72 and 120 using the prime class 6 maths CBSE

Give 10 examples for herbs , shrubs , climbers , creepers
