
Evaluate the expression \[{{\log }_{2}}xy=5,{{\log }_{\dfrac{1}{2}}}\left( \dfrac{x}{y} \right)=1\]
Answer
604.8k+ views
Hint: Use basic identity of logarithm given by;
If ${{a}^{x}}=N\text{ then }{{\log }_{a}}N=x$
We have equations/expression given in the problem as
\[{{\log }_{2}}xy=5.............\left( 1 \right)\]
And
\[{{\log }_{\dfrac{1}{2}}}\left( \dfrac{x}{y} \right)=1....................\left( 2 \right)\]
As, we know that if ${{a}^{x}}=N$ then we can take log to both sides as base of $a$
And we get:
${{a}^{x}}=N$
Taking $\log $ on both sides
${{\log }_{a}}{{a}^{x}}={{\log }_{a}}N$
As we know that ${{\log }_{c}}{{m}^{n}}=n{{\log }_{c}}m$ ;
Using this property we can write the above equation as;
$x{{\log }_{a}}a={{\log }_{a}}N$
As we know ${{\log }_{m}}m=1$ , we can rewrite the above relation as;
${{\log }_{a}}N=x$
Therefore, if we have ${{a}^{x}}=N$
Then ${{\log }_{a}}N=x................\left( 3 \right)$
Using the above property of logarithm we can write equation $\left( 1 \right)$ as
${{\log }_{2}}xy=5$
$xy={{2}^{5}}.................\left( 4 \right)$
Similarly, using the equation $\left( 3 \right)$ , we can write equation $\left( 2 \right)$ as
$\begin{align}
& {{\log }_{\dfrac{1}{2}}}\left( \dfrac{x}{y} \right)=1 \\
& \dfrac{x}{y}={{\left( \dfrac{1}{2} \right)}^{1}}=\left( \dfrac{1}{2} \right)..............\left( 5 \right) \\
\end{align}$
Now, we need to find $x\text{ and y}$ ; For that we can multiply equation $\left( 4 \right)\text{ and }\left( 5 \right)$ in following way;
$\begin{align}
& xy\times \dfrac{x}{y}={{2}^{5}}\times \dfrac{1}{2} \\
& {{x}^{2}}=\dfrac{32}{2}=16 \\
& {{x}^{2}}=16 \\
& x=\pm 4 \\
\end{align}$
To get value of $y$ , we can divide equation $\left( 4 \right)\And \left( 5 \right)$
$\begin{align}
& \dfrac{xy}{\left( \dfrac{x}{y} \right)}=\dfrac{{{2}^{5}}}{\left( \dfrac{1}{2} \right)} \\
& xy\times \dfrac{y}{x}=32\times 2 \\
& {{y}^{2}}=64 \\
& y=\pm 8 \\
\end{align}$
Hence, we have $x=\pm 4\text{ and }y=\pm 8$ .
Now, here we need to select $\left( x,y \right)$ pairs which will satisfy the equation$\left( 5 \right)\And \left( 4 \right)$.
Now, we have four pairs as
$\begin{align}
& x=4,y=8 \\
& x=-4,y=-8 \\
& x=4,y=-8 \\
& x=-4,y=8 \\
\end{align}$
We can put pairs to equation $\left( 4 \right)\And \left( 5 \right)$for verification
Case 1: $x=4,y=8$
For equation $\left( 4 \right)\text{ }xy=32$
$LHS=4\times 8=32=RHS$
For equation \[\left( 5 \right)\text{ }\dfrac{x}{y}=\dfrac{1}{2}\]
\[LHS=\dfrac{4}{8}=\dfrac{1}{2}=RHS\]
Hence $\left( 4,8 \right)$ is the solution of the given equations.
Case 2: $x=-4,y=8$
For equation $\left( 4 \right)$ $xy=32$
$LHS=-4\times -8=32=RHS$
For equation $\left( 5 \right)\text{ }\dfrac{x}{y}=\dfrac{1}{2}$
\[LHS=\dfrac{-4}{-8}=\dfrac{1}{2}=RHS\]
Hence, $\left( -4,-8 \right)$ pair is also a solution of the given equations.
Case 3: $x=-4,y=8$
For equation $\left( 4 \right)\text{ }xy=32$
$LHS=-4\times 8=-32\ne RHS$
It will not satisfy the equation $\left( 5 \right)$ $\dfrac{x}{y}=\dfrac{1}{2}$ as well.
Hence, $\left( -4,8 \right)$ pair is not a solution to the given equation.
Case 4: $x=4,y=-8$
For equation $\left( 4 \right)\text{ }xy=32$
$4\times \left( -8 \right)=-32\ne RHS$
For equation $\left( 5 \right)\dfrac{x}{y}=\dfrac{1}{2}$
$LHS=\dfrac{4}{-8}=-\dfrac{1}{2}\ne RHS$
Hence,$\left( 4,-8 \right)$ is not a solution of the given equation.
Note: We can get answers by putting values of $x=\pm 4$ in any of the equation $\left( 3 \right)\And \left( 4 \right)$ which will minimize our confusion related to $\left( -4,8 \right)or\left( 4,-8 \right)$ as explained in solution. One can also skip the question by just seeing the solution by just seeing the given function $\left( {{\log }_{2}}xy=5\text{ }\!\!\And\!\!\text{ }{{\log }_{\dfrac{1}{2}}}\dfrac{x}{y}=1 \right)$ as we cannot put negative values in logarithm $m$ function. Domain of $\log x$ is ${{R}^{+}}$ (positive real numbers).
One can go wrong by getting confused with formula if ${{a}^{x}}=N$ then ${{\log }_{a}}N=x$ . He/she may apply if ${{a}^{x}}=N$then ${{\log }_{N}}a=x$(general confusion with basic definition of logarithm function).
If ${{a}^{x}}=N\text{ then }{{\log }_{a}}N=x$
We have equations/expression given in the problem as
\[{{\log }_{2}}xy=5.............\left( 1 \right)\]
And
\[{{\log }_{\dfrac{1}{2}}}\left( \dfrac{x}{y} \right)=1....................\left( 2 \right)\]
As, we know that if ${{a}^{x}}=N$ then we can take log to both sides as base of $a$
And we get:
${{a}^{x}}=N$
Taking $\log $ on both sides
${{\log }_{a}}{{a}^{x}}={{\log }_{a}}N$
As we know that ${{\log }_{c}}{{m}^{n}}=n{{\log }_{c}}m$ ;
Using this property we can write the above equation as;
$x{{\log }_{a}}a={{\log }_{a}}N$
As we know ${{\log }_{m}}m=1$ , we can rewrite the above relation as;
${{\log }_{a}}N=x$
Therefore, if we have ${{a}^{x}}=N$
Then ${{\log }_{a}}N=x................\left( 3 \right)$
Using the above property of logarithm we can write equation $\left( 1 \right)$ as
${{\log }_{2}}xy=5$
$xy={{2}^{5}}.................\left( 4 \right)$
Similarly, using the equation $\left( 3 \right)$ , we can write equation $\left( 2 \right)$ as
$\begin{align}
& {{\log }_{\dfrac{1}{2}}}\left( \dfrac{x}{y} \right)=1 \\
& \dfrac{x}{y}={{\left( \dfrac{1}{2} \right)}^{1}}=\left( \dfrac{1}{2} \right)..............\left( 5 \right) \\
\end{align}$
Now, we need to find $x\text{ and y}$ ; For that we can multiply equation $\left( 4 \right)\text{ and }\left( 5 \right)$ in following way;
$\begin{align}
& xy\times \dfrac{x}{y}={{2}^{5}}\times \dfrac{1}{2} \\
& {{x}^{2}}=\dfrac{32}{2}=16 \\
& {{x}^{2}}=16 \\
& x=\pm 4 \\
\end{align}$
To get value of $y$ , we can divide equation $\left( 4 \right)\And \left( 5 \right)$
$\begin{align}
& \dfrac{xy}{\left( \dfrac{x}{y} \right)}=\dfrac{{{2}^{5}}}{\left( \dfrac{1}{2} \right)} \\
& xy\times \dfrac{y}{x}=32\times 2 \\
& {{y}^{2}}=64 \\
& y=\pm 8 \\
\end{align}$
Hence, we have $x=\pm 4\text{ and }y=\pm 8$ .
Now, here we need to select $\left( x,y \right)$ pairs which will satisfy the equation$\left( 5 \right)\And \left( 4 \right)$.
Now, we have four pairs as
$\begin{align}
& x=4,y=8 \\
& x=-4,y=-8 \\
& x=4,y=-8 \\
& x=-4,y=8 \\
\end{align}$
We can put pairs to equation $\left( 4 \right)\And \left( 5 \right)$for verification
Case 1: $x=4,y=8$
For equation $\left( 4 \right)\text{ }xy=32$
$LHS=4\times 8=32=RHS$
For equation \[\left( 5 \right)\text{ }\dfrac{x}{y}=\dfrac{1}{2}\]
\[LHS=\dfrac{4}{8}=\dfrac{1}{2}=RHS\]
Hence $\left( 4,8 \right)$ is the solution of the given equations.
Case 2: $x=-4,y=8$
For equation $\left( 4 \right)$ $xy=32$
$LHS=-4\times -8=32=RHS$
For equation $\left( 5 \right)\text{ }\dfrac{x}{y}=\dfrac{1}{2}$
\[LHS=\dfrac{-4}{-8}=\dfrac{1}{2}=RHS\]
Hence, $\left( -4,-8 \right)$ pair is also a solution of the given equations.
Case 3: $x=-4,y=8$
For equation $\left( 4 \right)\text{ }xy=32$
$LHS=-4\times 8=-32\ne RHS$
It will not satisfy the equation $\left( 5 \right)$ $\dfrac{x}{y}=\dfrac{1}{2}$ as well.
Hence, $\left( -4,8 \right)$ pair is not a solution to the given equation.
Case 4: $x=4,y=-8$
For equation $\left( 4 \right)\text{ }xy=32$
$4\times \left( -8 \right)=-32\ne RHS$
For equation $\left( 5 \right)\dfrac{x}{y}=\dfrac{1}{2}$
$LHS=\dfrac{4}{-8}=-\dfrac{1}{2}\ne RHS$
Hence,$\left( 4,-8 \right)$ is not a solution of the given equation.
Note: We can get answers by putting values of $x=\pm 4$ in any of the equation $\left( 3 \right)\And \left( 4 \right)$ which will minimize our confusion related to $\left( -4,8 \right)or\left( 4,-8 \right)$ as explained in solution. One can also skip the question by just seeing the solution by just seeing the given function $\left( {{\log }_{2}}xy=5\text{ }\!\!\And\!\!\text{ }{{\log }_{\dfrac{1}{2}}}\dfrac{x}{y}=1 \right)$ as we cannot put negative values in logarithm $m$ function. Domain of $\log x$ is ${{R}^{+}}$ (positive real numbers).
One can go wrong by getting confused with formula if ${{a}^{x}}=N$ then ${{\log }_{a}}N=x$ . He/she may apply if ${{a}^{x}}=N$then ${{\log }_{N}}a=x$(general confusion with basic definition of logarithm function).
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

