Answer
Verified
493.8k+ views
Hint: Use basic identity of logarithm given by;
If ${{a}^{x}}=N\text{ then }{{\log }_{a}}N=x$
We have equations/expression given in the problem as
\[{{\log }_{2}}xy=5.............\left( 1 \right)\]
And
\[{{\log }_{\dfrac{1}{2}}}\left( \dfrac{x}{y} \right)=1....................\left( 2 \right)\]
As, we know that if ${{a}^{x}}=N$ then we can take log to both sides as base of $a$
And we get:
${{a}^{x}}=N$
Taking $\log $ on both sides
${{\log }_{a}}{{a}^{x}}={{\log }_{a}}N$
As we know that ${{\log }_{c}}{{m}^{n}}=n{{\log }_{c}}m$ ;
Using this property we can write the above equation as;
$x{{\log }_{a}}a={{\log }_{a}}N$
As we know ${{\log }_{m}}m=1$ , we can rewrite the above relation as;
${{\log }_{a}}N=x$
Therefore, if we have ${{a}^{x}}=N$
Then ${{\log }_{a}}N=x................\left( 3 \right)$
Using the above property of logarithm we can write equation $\left( 1 \right)$ as
${{\log }_{2}}xy=5$
$xy={{2}^{5}}.................\left( 4 \right)$
Similarly, using the equation $\left( 3 \right)$ , we can write equation $\left( 2 \right)$ as
$\begin{align}
& {{\log }_{\dfrac{1}{2}}}\left( \dfrac{x}{y} \right)=1 \\
& \dfrac{x}{y}={{\left( \dfrac{1}{2} \right)}^{1}}=\left( \dfrac{1}{2} \right)..............\left( 5 \right) \\
\end{align}$
Now, we need to find $x\text{ and y}$ ; For that we can multiply equation $\left( 4 \right)\text{ and }\left( 5 \right)$ in following way;
$\begin{align}
& xy\times \dfrac{x}{y}={{2}^{5}}\times \dfrac{1}{2} \\
& {{x}^{2}}=\dfrac{32}{2}=16 \\
& {{x}^{2}}=16 \\
& x=\pm 4 \\
\end{align}$
To get value of $y$ , we can divide equation $\left( 4 \right)\And \left( 5 \right)$
$\begin{align}
& \dfrac{xy}{\left( \dfrac{x}{y} \right)}=\dfrac{{{2}^{5}}}{\left( \dfrac{1}{2} \right)} \\
& xy\times \dfrac{y}{x}=32\times 2 \\
& {{y}^{2}}=64 \\
& y=\pm 8 \\
\end{align}$
Hence, we have $x=\pm 4\text{ and }y=\pm 8$ .
Now, here we need to select $\left( x,y \right)$ pairs which will satisfy the equation$\left( 5 \right)\And \left( 4 \right)$.
Now, we have four pairs as
$\begin{align}
& x=4,y=8 \\
& x=-4,y=-8 \\
& x=4,y=-8 \\
& x=-4,y=8 \\
\end{align}$
We can put pairs to equation $\left( 4 \right)\And \left( 5 \right)$for verification
Case 1: $x=4,y=8$
For equation $\left( 4 \right)\text{ }xy=32$
$LHS=4\times 8=32=RHS$
For equation \[\left( 5 \right)\text{ }\dfrac{x}{y}=\dfrac{1}{2}\]
\[LHS=\dfrac{4}{8}=\dfrac{1}{2}=RHS\]
Hence $\left( 4,8 \right)$ is the solution of the given equations.
Case 2: $x=-4,y=8$
For equation $\left( 4 \right)$ $xy=32$
$LHS=-4\times -8=32=RHS$
For equation $\left( 5 \right)\text{ }\dfrac{x}{y}=\dfrac{1}{2}$
\[LHS=\dfrac{-4}{-8}=\dfrac{1}{2}=RHS\]
Hence, $\left( -4,-8 \right)$ pair is also a solution of the given equations.
Case 3: $x=-4,y=8$
For equation $\left( 4 \right)\text{ }xy=32$
$LHS=-4\times 8=-32\ne RHS$
It will not satisfy the equation $\left( 5 \right)$ $\dfrac{x}{y}=\dfrac{1}{2}$ as well.
Hence, $\left( -4,8 \right)$ pair is not a solution to the given equation.
Case 4: $x=4,y=-8$
For equation $\left( 4 \right)\text{ }xy=32$
$4\times \left( -8 \right)=-32\ne RHS$
For equation $\left( 5 \right)\dfrac{x}{y}=\dfrac{1}{2}$
$LHS=\dfrac{4}{-8}=-\dfrac{1}{2}\ne RHS$
Hence,$\left( 4,-8 \right)$ is not a solution of the given equation.
Note: We can get answers by putting values of $x=\pm 4$ in any of the equation $\left( 3 \right)\And \left( 4 \right)$ which will minimize our confusion related to $\left( -4,8 \right)or\left( 4,-8 \right)$ as explained in solution. One can also skip the question by just seeing the solution by just seeing the given function $\left( {{\log }_{2}}xy=5\text{ }\!\!\And\!\!\text{ }{{\log }_{\dfrac{1}{2}}}\dfrac{x}{y}=1 \right)$ as we cannot put negative values in logarithm $m$ function. Domain of $\log x$ is ${{R}^{+}}$ (positive real numbers).
One can go wrong by getting confused with formula if ${{a}^{x}}=N$ then ${{\log }_{a}}N=x$ . He/she may apply if ${{a}^{x}}=N$then ${{\log }_{N}}a=x$(general confusion with basic definition of logarithm function).
If ${{a}^{x}}=N\text{ then }{{\log }_{a}}N=x$
We have equations/expression given in the problem as
\[{{\log }_{2}}xy=5.............\left( 1 \right)\]
And
\[{{\log }_{\dfrac{1}{2}}}\left( \dfrac{x}{y} \right)=1....................\left( 2 \right)\]
As, we know that if ${{a}^{x}}=N$ then we can take log to both sides as base of $a$
And we get:
${{a}^{x}}=N$
Taking $\log $ on both sides
${{\log }_{a}}{{a}^{x}}={{\log }_{a}}N$
As we know that ${{\log }_{c}}{{m}^{n}}=n{{\log }_{c}}m$ ;
Using this property we can write the above equation as;
$x{{\log }_{a}}a={{\log }_{a}}N$
As we know ${{\log }_{m}}m=1$ , we can rewrite the above relation as;
${{\log }_{a}}N=x$
Therefore, if we have ${{a}^{x}}=N$
Then ${{\log }_{a}}N=x................\left( 3 \right)$
Using the above property of logarithm we can write equation $\left( 1 \right)$ as
${{\log }_{2}}xy=5$
$xy={{2}^{5}}.................\left( 4 \right)$
Similarly, using the equation $\left( 3 \right)$ , we can write equation $\left( 2 \right)$ as
$\begin{align}
& {{\log }_{\dfrac{1}{2}}}\left( \dfrac{x}{y} \right)=1 \\
& \dfrac{x}{y}={{\left( \dfrac{1}{2} \right)}^{1}}=\left( \dfrac{1}{2} \right)..............\left( 5 \right) \\
\end{align}$
Now, we need to find $x\text{ and y}$ ; For that we can multiply equation $\left( 4 \right)\text{ and }\left( 5 \right)$ in following way;
$\begin{align}
& xy\times \dfrac{x}{y}={{2}^{5}}\times \dfrac{1}{2} \\
& {{x}^{2}}=\dfrac{32}{2}=16 \\
& {{x}^{2}}=16 \\
& x=\pm 4 \\
\end{align}$
To get value of $y$ , we can divide equation $\left( 4 \right)\And \left( 5 \right)$
$\begin{align}
& \dfrac{xy}{\left( \dfrac{x}{y} \right)}=\dfrac{{{2}^{5}}}{\left( \dfrac{1}{2} \right)} \\
& xy\times \dfrac{y}{x}=32\times 2 \\
& {{y}^{2}}=64 \\
& y=\pm 8 \\
\end{align}$
Hence, we have $x=\pm 4\text{ and }y=\pm 8$ .
Now, here we need to select $\left( x,y \right)$ pairs which will satisfy the equation$\left( 5 \right)\And \left( 4 \right)$.
Now, we have four pairs as
$\begin{align}
& x=4,y=8 \\
& x=-4,y=-8 \\
& x=4,y=-8 \\
& x=-4,y=8 \\
\end{align}$
We can put pairs to equation $\left( 4 \right)\And \left( 5 \right)$for verification
Case 1: $x=4,y=8$
For equation $\left( 4 \right)\text{ }xy=32$
$LHS=4\times 8=32=RHS$
For equation \[\left( 5 \right)\text{ }\dfrac{x}{y}=\dfrac{1}{2}\]
\[LHS=\dfrac{4}{8}=\dfrac{1}{2}=RHS\]
Hence $\left( 4,8 \right)$ is the solution of the given equations.
Case 2: $x=-4,y=8$
For equation $\left( 4 \right)$ $xy=32$
$LHS=-4\times -8=32=RHS$
For equation $\left( 5 \right)\text{ }\dfrac{x}{y}=\dfrac{1}{2}$
\[LHS=\dfrac{-4}{-8}=\dfrac{1}{2}=RHS\]
Hence, $\left( -4,-8 \right)$ pair is also a solution of the given equations.
Case 3: $x=-4,y=8$
For equation $\left( 4 \right)\text{ }xy=32$
$LHS=-4\times 8=-32\ne RHS$
It will not satisfy the equation $\left( 5 \right)$ $\dfrac{x}{y}=\dfrac{1}{2}$ as well.
Hence, $\left( -4,8 \right)$ pair is not a solution to the given equation.
Case 4: $x=4,y=-8$
For equation $\left( 4 \right)\text{ }xy=32$
$4\times \left( -8 \right)=-32\ne RHS$
For equation $\left( 5 \right)\dfrac{x}{y}=\dfrac{1}{2}$
$LHS=\dfrac{4}{-8}=-\dfrac{1}{2}\ne RHS$
Hence,$\left( 4,-8 \right)$ is not a solution of the given equation.
Note: We can get answers by putting values of $x=\pm 4$ in any of the equation $\left( 3 \right)\And \left( 4 \right)$ which will minimize our confusion related to $\left( -4,8 \right)or\left( 4,-8 \right)$ as explained in solution. One can also skip the question by just seeing the solution by just seeing the given function $\left( {{\log }_{2}}xy=5\text{ }\!\!\And\!\!\text{ }{{\log }_{\dfrac{1}{2}}}\dfrac{x}{y}=1 \right)$ as we cannot put negative values in logarithm $m$ function. Domain of $\log x$ is ${{R}^{+}}$ (positive real numbers).
One can go wrong by getting confused with formula if ${{a}^{x}}=N$ then ${{\log }_{a}}N=x$ . He/she may apply if ${{a}^{x}}=N$then ${{\log }_{N}}a=x$(general confusion with basic definition of logarithm function).
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE