
Evaluate the equation $\cos \dfrac{2\pi }{7}+\cos \dfrac{4\pi }{7}+\cos \dfrac{6\pi }{7}$
A) Is equal to zero
B) Lies between 0 and 3
C) Is a negative number
D) Lies between 3 and 6
Answer
608.7k+ views
Hint: Multiply and divide with $\sin \dfrac{\pi }{7}$ to the expression then simplify the expression using the trigonometric identities.
Complete step-by-step answer:
We have expression
$\cos \dfrac{2\pi }{7}+\cos \dfrac{4\pi }{7}+\cos \dfrac{6\pi }{7}$
Let us suppose the given expression is M.
$M=\cos \dfrac{2\pi }{7}+\cos \dfrac{4\pi }{7}+\cos \dfrac{6\pi }{7}............\left( 1 \right)$
Now, multiply the equation (1) by using $2\sin \dfrac{\pi }{7}$ to both sides and then apply trigonometric identity as follows:
\[2M\sin \dfrac{\pi }{7}=2\sin \dfrac{\pi }{7}\cos \dfrac{2\pi }{7}+2\sin \dfrac{\pi }{7}\cos \dfrac{4\pi }{7}+2\sin \dfrac{\pi }{7}\cos \dfrac{6\pi }{7}..........\left( 2 \right)\]
Here, we have to apply relation;
2 sin A cos B = sin (A + B) + sin (A – B)............................(3)
Now apply the above trigonometric identity in equation (2), we get
$2M\sin \dfrac{\pi }{7}=\sin \left( \dfrac{\pi }{7}+\dfrac{2\pi }{7} \right)+\sin \left( \dfrac{\pi }{7}-\dfrac{2\pi }{7} \right)+\sin \left( \dfrac{\pi }{7}+\dfrac{4\pi }{7} \right)+\sin \left( \dfrac{\pi }{7}-\dfrac{4\pi }{7} \right)+\sin \left( \dfrac{\pi }{7}+\dfrac{6\pi }{7} \right)+\sin \left( \dfrac{\pi }{7}-\dfrac{6\pi }{7} \right)$ One simplifying the above equation, we get;
$2M\sin \dfrac{\pi }{7}=\sin \dfrac{3\pi }{7}+\sin \left( \dfrac{-\pi }{7} \right)+\sin \dfrac{5\pi }{7}+\sin \left( \dfrac{-3\pi }{7} \right)+\sin \left( \dfrac{7\pi }{7} \right)+\sin \left( \dfrac{-5\pi }{7} \right)$
As, we know that;
$\sin \left( -\theta \right)=-\sin \theta ................\left( 4 \right)$
Therefore, we can write the value of $2M\sin \dfrac{\pi }{7}$ by using the relation (4), we get;
\[2M\sin \dfrac{\pi }{7}=\sin \dfrac{3\pi }{7}-\sin \dfrac{\pi }{7}+\sin \dfrac{5\pi }{7}-\sin \dfrac{3\pi }{7}+\sin \dfrac{7\pi }{7}-\sin \dfrac{5\pi }{7}\]
Cancelling out same terms with positive and negative signs, we get;
$2M\sin \dfrac{\pi }{7}=-\sin \dfrac{\pi }{7}+\sin \left( \dfrac{7\pi }{7} \right)$
Or
$2M\sin \dfrac{\pi }{7}=-\sin \dfrac{\pi }{7}+\sin \pi $
We have value if $\sin \pi $ is zero. Hence, above equation can be written as
$\begin{align}
& 2M\sin \dfrac{\pi }{7}=-\sin \dfrac{\pi }{7} \\
& M=\dfrac{-\sin \dfrac{\pi }{7}}{2\sin \dfrac{\pi }{7}} \\
\end{align}$
Therefore $M=\dfrac{-1}{2}$
Hence, value of $\cos \dfrac{2\pi }{7}+\cos \dfrac{4\pi }{7}+\cos \dfrac{6\pi }{7}$ is $\dfrac{-1}{2}$ .
Hence, option C is correct from the given options.
Note: Key point of the question is multiplication by $\sin \dfrac{\pi }{7}$ to the expression $\cos \dfrac{2\pi }{7}+\cos \dfrac{4\pi }{7}+\cos \dfrac{6\pi }{7}.$ As, we know after multiplying, we will get expression of type 2sinAcosB which cancel out all terms.
One can go wrong while applying the formula of 2sinAcosB. Confusion of plus or minus sign between sin(A+B) and sin (A-B) may occur. So, we can verify that by just expanding sin(A+B) and sin(A-B). And, we get to know identity as;
2sinAcosB=sin(A+B)+sin(A-B)
Complete step-by-step answer:
We have expression
$\cos \dfrac{2\pi }{7}+\cos \dfrac{4\pi }{7}+\cos \dfrac{6\pi }{7}$
Let us suppose the given expression is M.
$M=\cos \dfrac{2\pi }{7}+\cos \dfrac{4\pi }{7}+\cos \dfrac{6\pi }{7}............\left( 1 \right)$
Now, multiply the equation (1) by using $2\sin \dfrac{\pi }{7}$ to both sides and then apply trigonometric identity as follows:
\[2M\sin \dfrac{\pi }{7}=2\sin \dfrac{\pi }{7}\cos \dfrac{2\pi }{7}+2\sin \dfrac{\pi }{7}\cos \dfrac{4\pi }{7}+2\sin \dfrac{\pi }{7}\cos \dfrac{6\pi }{7}..........\left( 2 \right)\]
Here, we have to apply relation;
2 sin A cos B = sin (A + B) + sin (A – B)............................(3)
Now apply the above trigonometric identity in equation (2), we get
$2M\sin \dfrac{\pi }{7}=\sin \left( \dfrac{\pi }{7}+\dfrac{2\pi }{7} \right)+\sin \left( \dfrac{\pi }{7}-\dfrac{2\pi }{7} \right)+\sin \left( \dfrac{\pi }{7}+\dfrac{4\pi }{7} \right)+\sin \left( \dfrac{\pi }{7}-\dfrac{4\pi }{7} \right)+\sin \left( \dfrac{\pi }{7}+\dfrac{6\pi }{7} \right)+\sin \left( \dfrac{\pi }{7}-\dfrac{6\pi }{7} \right)$ One simplifying the above equation, we get;
$2M\sin \dfrac{\pi }{7}=\sin \dfrac{3\pi }{7}+\sin \left( \dfrac{-\pi }{7} \right)+\sin \dfrac{5\pi }{7}+\sin \left( \dfrac{-3\pi }{7} \right)+\sin \left( \dfrac{7\pi }{7} \right)+\sin \left( \dfrac{-5\pi }{7} \right)$
As, we know that;
$\sin \left( -\theta \right)=-\sin \theta ................\left( 4 \right)$
Therefore, we can write the value of $2M\sin \dfrac{\pi }{7}$ by using the relation (4), we get;
\[2M\sin \dfrac{\pi }{7}=\sin \dfrac{3\pi }{7}-\sin \dfrac{\pi }{7}+\sin \dfrac{5\pi }{7}-\sin \dfrac{3\pi }{7}+\sin \dfrac{7\pi }{7}-\sin \dfrac{5\pi }{7}\]
Cancelling out same terms with positive and negative signs, we get;
$2M\sin \dfrac{\pi }{7}=-\sin \dfrac{\pi }{7}+\sin \left( \dfrac{7\pi }{7} \right)$
Or
$2M\sin \dfrac{\pi }{7}=-\sin \dfrac{\pi }{7}+\sin \pi $
We have value if $\sin \pi $ is zero. Hence, above equation can be written as
$\begin{align}
& 2M\sin \dfrac{\pi }{7}=-\sin \dfrac{\pi }{7} \\
& M=\dfrac{-\sin \dfrac{\pi }{7}}{2\sin \dfrac{\pi }{7}} \\
\end{align}$
Therefore $M=\dfrac{-1}{2}$
Hence, value of $\cos \dfrac{2\pi }{7}+\cos \dfrac{4\pi }{7}+\cos \dfrac{6\pi }{7}$ is $\dfrac{-1}{2}$ .
Hence, option C is correct from the given options.
Note: Key point of the question is multiplication by $\sin \dfrac{\pi }{7}$ to the expression $\cos \dfrac{2\pi }{7}+\cos \dfrac{4\pi }{7}+\cos \dfrac{6\pi }{7}.$ As, we know after multiplying, we will get expression of type 2sinAcosB which cancel out all terms.
One can go wrong while applying the formula of 2sinAcosB. Confusion of plus or minus sign between sin(A+B) and sin (A-B) may occur. So, we can verify that by just expanding sin(A+B) and sin(A-B). And, we get to know identity as;
2sinAcosB=sin(A+B)+sin(A-B)
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

What is periodicity class 11 chemistry CBSE

Explain zero factorial class 11 maths CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

What are porins class 11 biology CBSE

