# Evaluate the equation $\cos \dfrac{2\pi }{7}+\cos \dfrac{4\pi }{7}+\cos \dfrac{6\pi }{7}$

A) Is equal to zero

B) Lies between 0 and 3

C) Is a negative number

D) Lies between 3 and 6

Last updated date: 27th Mar 2023

•

Total views: 308.1k

•

Views today: 4.85k

Answer

Verified

308.1k+ views

Hint: Multiply and divide with $\sin \dfrac{\pi }{7}$ to the expression then simplify the expression using the trigonometric identities.

Complete step-by-step answer:

We have expression

$\cos \dfrac{2\pi }{7}+\cos \dfrac{4\pi }{7}+\cos \dfrac{6\pi }{7}$

Let us suppose the given expression is M.

$M=\cos \dfrac{2\pi }{7}+\cos \dfrac{4\pi }{7}+\cos \dfrac{6\pi }{7}............\left( 1 \right)$

Now, multiply the equation (1) by using $2\sin \dfrac{\pi }{7}$ to both sides and then apply trigonometric identity as follows:

\[2M\sin \dfrac{\pi }{7}=2\sin \dfrac{\pi }{7}\cos \dfrac{2\pi }{7}+2\sin \dfrac{\pi }{7}\cos \dfrac{4\pi }{7}+2\sin \dfrac{\pi }{7}\cos \dfrac{6\pi }{7}..........\left( 2 \right)\]

Here, we have to apply relation;

2 sin A cos B = sin (A + B) + sin (A – B)............................(3)

Now apply the above trigonometric identity in equation (2), we get

$2M\sin \dfrac{\pi }{7}=\sin \left( \dfrac{\pi }{7}+\dfrac{2\pi }{7} \right)+\sin \left( \dfrac{\pi }{7}-\dfrac{2\pi }{7} \right)+\sin \left( \dfrac{\pi }{7}+\dfrac{4\pi }{7} \right)+\sin \left( \dfrac{\pi }{7}-\dfrac{4\pi }{7} \right)+\sin \left( \dfrac{\pi }{7}+\dfrac{6\pi }{7} \right)+\sin \left( \dfrac{\pi }{7}-\dfrac{6\pi }{7} \right)$ One simplifying the above equation, we get;

$2M\sin \dfrac{\pi }{7}=\sin \dfrac{3\pi }{7}+\sin \left( \dfrac{-\pi }{7} \right)+\sin \dfrac{5\pi }{7}+\sin \left( \dfrac{-3\pi }{7} \right)+\sin \left( \dfrac{7\pi }{7} \right)+\sin \left( \dfrac{-5\pi }{7} \right)$

As, we know that;

$\sin \left( -\theta \right)=-\sin \theta ................\left( 4 \right)$

Therefore, we can write the value of $2M\sin \dfrac{\pi }{7}$ by using the relation (4), we get;

\[2M\sin \dfrac{\pi }{7}=\sin \dfrac{3\pi }{7}-\sin \dfrac{\pi }{7}+\sin \dfrac{5\pi }{7}-\sin \dfrac{3\pi }{7}+\sin \dfrac{7\pi }{7}-\sin \dfrac{5\pi }{7}\]

Cancelling out same terms with positive and negative signs, we get;

$2M\sin \dfrac{\pi }{7}=-\sin \dfrac{\pi }{7}+\sin \left( \dfrac{7\pi }{7} \right)$

Or

$2M\sin \dfrac{\pi }{7}=-\sin \dfrac{\pi }{7}+\sin \pi $

We have value if $\sin \pi $ is zero. Hence, above equation can be written as

$\begin{align}

& 2M\sin \dfrac{\pi }{7}=-\sin \dfrac{\pi }{7} \\

& M=\dfrac{-\sin \dfrac{\pi }{7}}{2\sin \dfrac{\pi }{7}} \\

\end{align}$

Therefore $M=\dfrac{-1}{2}$

Hence, value of $\cos \dfrac{2\pi }{7}+\cos \dfrac{4\pi }{7}+\cos \dfrac{6\pi }{7}$ is $\dfrac{-1}{2}$ .

Hence, option C is correct from the given options.

Note: Key point of the question is multiplication by $\sin \dfrac{\pi }{7}$ to the expression $\cos \dfrac{2\pi }{7}+\cos \dfrac{4\pi }{7}+\cos \dfrac{6\pi }{7}.$ As, we know after multiplying, we will get expression of type 2sinAcosB which cancel out all terms.

One can go wrong while applying the formula of 2sinAcosB. Confusion of plus or minus sign between sin(A+B) and sin (A-B) may occur. So, we can verify that by just expanding sin(A+B) and sin(A-B). And, we get to know identity as;

2sinAcosB=sin(A+B)+sin(A-B)

Complete step-by-step answer:

We have expression

$\cos \dfrac{2\pi }{7}+\cos \dfrac{4\pi }{7}+\cos \dfrac{6\pi }{7}$

Let us suppose the given expression is M.

$M=\cos \dfrac{2\pi }{7}+\cos \dfrac{4\pi }{7}+\cos \dfrac{6\pi }{7}............\left( 1 \right)$

Now, multiply the equation (1) by using $2\sin \dfrac{\pi }{7}$ to both sides and then apply trigonometric identity as follows:

\[2M\sin \dfrac{\pi }{7}=2\sin \dfrac{\pi }{7}\cos \dfrac{2\pi }{7}+2\sin \dfrac{\pi }{7}\cos \dfrac{4\pi }{7}+2\sin \dfrac{\pi }{7}\cos \dfrac{6\pi }{7}..........\left( 2 \right)\]

Here, we have to apply relation;

2 sin A cos B = sin (A + B) + sin (A – B)............................(3)

Now apply the above trigonometric identity in equation (2), we get

$2M\sin \dfrac{\pi }{7}=\sin \left( \dfrac{\pi }{7}+\dfrac{2\pi }{7} \right)+\sin \left( \dfrac{\pi }{7}-\dfrac{2\pi }{7} \right)+\sin \left( \dfrac{\pi }{7}+\dfrac{4\pi }{7} \right)+\sin \left( \dfrac{\pi }{7}-\dfrac{4\pi }{7} \right)+\sin \left( \dfrac{\pi }{7}+\dfrac{6\pi }{7} \right)+\sin \left( \dfrac{\pi }{7}-\dfrac{6\pi }{7} \right)$ One simplifying the above equation, we get;

$2M\sin \dfrac{\pi }{7}=\sin \dfrac{3\pi }{7}+\sin \left( \dfrac{-\pi }{7} \right)+\sin \dfrac{5\pi }{7}+\sin \left( \dfrac{-3\pi }{7} \right)+\sin \left( \dfrac{7\pi }{7} \right)+\sin \left( \dfrac{-5\pi }{7} \right)$

As, we know that;

$\sin \left( -\theta \right)=-\sin \theta ................\left( 4 \right)$

Therefore, we can write the value of $2M\sin \dfrac{\pi }{7}$ by using the relation (4), we get;

\[2M\sin \dfrac{\pi }{7}=\sin \dfrac{3\pi }{7}-\sin \dfrac{\pi }{7}+\sin \dfrac{5\pi }{7}-\sin \dfrac{3\pi }{7}+\sin \dfrac{7\pi }{7}-\sin \dfrac{5\pi }{7}\]

Cancelling out same terms with positive and negative signs, we get;

$2M\sin \dfrac{\pi }{7}=-\sin \dfrac{\pi }{7}+\sin \left( \dfrac{7\pi }{7} \right)$

Or

$2M\sin \dfrac{\pi }{7}=-\sin \dfrac{\pi }{7}+\sin \pi $

We have value if $\sin \pi $ is zero. Hence, above equation can be written as

$\begin{align}

& 2M\sin \dfrac{\pi }{7}=-\sin \dfrac{\pi }{7} \\

& M=\dfrac{-\sin \dfrac{\pi }{7}}{2\sin \dfrac{\pi }{7}} \\

\end{align}$

Therefore $M=\dfrac{-1}{2}$

Hence, value of $\cos \dfrac{2\pi }{7}+\cos \dfrac{4\pi }{7}+\cos \dfrac{6\pi }{7}$ is $\dfrac{-1}{2}$ .

Hence, option C is correct from the given options.

Note: Key point of the question is multiplication by $\sin \dfrac{\pi }{7}$ to the expression $\cos \dfrac{2\pi }{7}+\cos \dfrac{4\pi }{7}+\cos \dfrac{6\pi }{7}.$ As, we know after multiplying, we will get expression of type 2sinAcosB which cancel out all terms.

One can go wrong while applying the formula of 2sinAcosB. Confusion of plus or minus sign between sin(A+B) and sin (A-B) may occur. So, we can verify that by just expanding sin(A+B) and sin(A-B). And, we get to know identity as;

2sinAcosB=sin(A+B)+sin(A-B)

Recently Updated Pages

Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE