
Evaluate \[\sqrt[3]{121}\times \sqrt[3]{297}\]
Answer
414.6k+ views
Hint: Type of questions are based on the algebraic expression which can be easily solved if we know some of the basic algebraic identities, and how to use them. Further you should also try to make it as simple as these questions, through converting them into prime numbers or simple numbers. Here are some of the identities which we will required in this question, to simply it are;
\[\begin{align}
& {{a}^{n}}{{a}^{m}}={{a}^{(n+m)}} \\
& {{a}^{\left( \dfrac{1}{n} \right)}}=\sqrt[n]{a} \\
& {{(ab)}^{m}}={{a}^{m}}{{b}^{m}} \\
& {{({{a}^{n}})}^{m}}={{a}^{mn}} \\
\end{align}\]
In these identities a, b, m, n can be variable or constant. We will use these identities to solve the question.
Complete step by step answer:
Moving further with the question, i.e. \[\sqrt[3]{121}\times \sqrt[3]{297}\]
Now you should aim to reduce these large values into prime numbers and try to vanish these exponential values using the above identities.
So by using the second identity i.e. \[{{a}^{\left( \dfrac{1}{n} \right)}}=\sqrt[n]{a}\]
${{\left( 121 \right)}^{\dfrac{1}{3}}}\times {{\left( 297 \right)}^{\dfrac{1}{3}}}$
To reduce the numbers to prime numbers, prime factorisation of 121 and 297 is;
$\begin{align}
& 121=11\times 11 \\
& 297=11\times 3\times 3\times 3 \\
\end{align}$
So,${{\left( 121 \right)}^{\dfrac{1}{3}}}\times {{\left( 297 \right)}^{\dfrac{1}{3}}}$can be further written as in prime numbers;
\[\begin{align}
& {{(11\times 11)}^{\left( \dfrac{1}{3} \right)}}\times {{(11\times 3\times 3\times 3)}^{\left( \dfrac{1}{3} \right)}} \\
& {{({{11}^{1+1}})}^{\left( \dfrac{1}{3} \right)}}\times {{({{11}^{1}}\times {{3}^{1+1+1}})}^{\left( \dfrac{1}{3} \right)}} \\
& {{({{11}^{2}})}^{\left( \dfrac{1}{3} \right)}}\times {{({{11}^{1}}\times {{3}^{3}})}^{\left( \dfrac{1}{3} \right)}} \\
\end{align}\]
By using the third identity i.e. \[{{(ab)}^{m}}={{a}^{m}}{{b}^{m}}\]we can write above equation as
\[\begin{align}
& {{({{11}^{2}})}^{\left( \dfrac{1}{3} \right)}}\times {{({{11}^{1}}\times {{3}^{3}})}^{\left( \dfrac{1}{3} \right)}} \\
& {{({{11}^{2}})}^{\left( \dfrac{1}{3} \right)}}\times {{(11)}^{\left( \dfrac{1}{3} \right)}}\times {{({{3}^{3}})}^{\left( \dfrac{1}{3} \right)}} \\
\end{align}\]
Further, by using the fourth identity i.e. \[{{(\mathop{a}^{n})}^{m}}={{a}^{mn}}\], we can write above expression as
\[\begin{align}
& {{({{11}^{2}})}^{\left( \dfrac{1}{3} \right)}}\times {{(11)}^{\left( \dfrac{1}{3} \right)}}\times {{({{3}^{3}})}^{\left( \dfrac{1}{3} \right)}} \\
& {{(11)}^{\left( \dfrac{2}{3} \right)}}\times {{(11)}^{\left( \dfrac{1}{3} \right)}}\times {{(3)}^{\left( \dfrac{3}{3} \right)}} \\
\end{align}\]
And finally by using the first identity i.e. \[{{a}^{n}}{{a}^{m}}={{a}^{(n+m)}}\], we can write above equation as;
\[\begin{align}
& {{(11)}^{\left( \dfrac{2}{3} \right)}}\times {{(11)}^{\left( \dfrac{1}{3} \right)}}\times {{(3)}^{\left( \dfrac{3}{3} \right)}} \\
& {{(11)}^{\left( \dfrac{2}{3}+\dfrac{1}{3} \right)}}\times {{(3)}^{\left( \dfrac{3}{3} \right)}} \\
& {{(11)}^{\left( \dfrac{3}{3} \right)}}\times {{(3)}^{\left( \dfrac{3}{3} \right)}} \\
& {{(11)}^{\left( 1 \right)}}\times {{(3)}^{\left( 1 \right)}} \\
\end{align}\]
So, we get $11\times 3$ on solving, which is 33.
Hence 33 is the answer.
Note: while using identities keep in mind that power gets added only when two terms are same and in multiplication. And whenever you try to simplify such a question, always try to reduce these large values into smaller one, and prime numbers are the smaller one.
\[\begin{align}
& {{a}^{n}}{{a}^{m}}={{a}^{(n+m)}} \\
& {{a}^{\left( \dfrac{1}{n} \right)}}=\sqrt[n]{a} \\
& {{(ab)}^{m}}={{a}^{m}}{{b}^{m}} \\
& {{({{a}^{n}})}^{m}}={{a}^{mn}} \\
\end{align}\]
In these identities a, b, m, n can be variable or constant. We will use these identities to solve the question.
Complete step by step answer:
Moving further with the question, i.e. \[\sqrt[3]{121}\times \sqrt[3]{297}\]
Now you should aim to reduce these large values into prime numbers and try to vanish these exponential values using the above identities.
So by using the second identity i.e. \[{{a}^{\left( \dfrac{1}{n} \right)}}=\sqrt[n]{a}\]
${{\left( 121 \right)}^{\dfrac{1}{3}}}\times {{\left( 297 \right)}^{\dfrac{1}{3}}}$
To reduce the numbers to prime numbers, prime factorisation of 121 and 297 is;
$\begin{align}
& 121=11\times 11 \\
& 297=11\times 3\times 3\times 3 \\
\end{align}$
So,${{\left( 121 \right)}^{\dfrac{1}{3}}}\times {{\left( 297 \right)}^{\dfrac{1}{3}}}$can be further written as in prime numbers;
\[\begin{align}
& {{(11\times 11)}^{\left( \dfrac{1}{3} \right)}}\times {{(11\times 3\times 3\times 3)}^{\left( \dfrac{1}{3} \right)}} \\
& {{({{11}^{1+1}})}^{\left( \dfrac{1}{3} \right)}}\times {{({{11}^{1}}\times {{3}^{1+1+1}})}^{\left( \dfrac{1}{3} \right)}} \\
& {{({{11}^{2}})}^{\left( \dfrac{1}{3} \right)}}\times {{({{11}^{1}}\times {{3}^{3}})}^{\left( \dfrac{1}{3} \right)}} \\
\end{align}\]
By using the third identity i.e. \[{{(ab)}^{m}}={{a}^{m}}{{b}^{m}}\]we can write above equation as
\[\begin{align}
& {{({{11}^{2}})}^{\left( \dfrac{1}{3} \right)}}\times {{({{11}^{1}}\times {{3}^{3}})}^{\left( \dfrac{1}{3} \right)}} \\
& {{({{11}^{2}})}^{\left( \dfrac{1}{3} \right)}}\times {{(11)}^{\left( \dfrac{1}{3} \right)}}\times {{({{3}^{3}})}^{\left( \dfrac{1}{3} \right)}} \\
\end{align}\]
Further, by using the fourth identity i.e. \[{{(\mathop{a}^{n})}^{m}}={{a}^{mn}}\], we can write above expression as
\[\begin{align}
& {{({{11}^{2}})}^{\left( \dfrac{1}{3} \right)}}\times {{(11)}^{\left( \dfrac{1}{3} \right)}}\times {{({{3}^{3}})}^{\left( \dfrac{1}{3} \right)}} \\
& {{(11)}^{\left( \dfrac{2}{3} \right)}}\times {{(11)}^{\left( \dfrac{1}{3} \right)}}\times {{(3)}^{\left( \dfrac{3}{3} \right)}} \\
\end{align}\]
And finally by using the first identity i.e. \[{{a}^{n}}{{a}^{m}}={{a}^{(n+m)}}\], we can write above equation as;
\[\begin{align}
& {{(11)}^{\left( \dfrac{2}{3} \right)}}\times {{(11)}^{\left( \dfrac{1}{3} \right)}}\times {{(3)}^{\left( \dfrac{3}{3} \right)}} \\
& {{(11)}^{\left( \dfrac{2}{3}+\dfrac{1}{3} \right)}}\times {{(3)}^{\left( \dfrac{3}{3} \right)}} \\
& {{(11)}^{\left( \dfrac{3}{3} \right)}}\times {{(3)}^{\left( \dfrac{3}{3} \right)}} \\
& {{(11)}^{\left( 1 \right)}}\times {{(3)}^{\left( 1 \right)}} \\
\end{align}\]
So, we get $11\times 3$ on solving, which is 33.
Hence 33 is the answer.
Note: while using identities keep in mind that power gets added only when two terms are same and in multiplication. And whenever you try to simplify such a question, always try to reduce these large values into smaller one, and prime numbers are the smaller one.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

The first successful textile mill was established in class 9 social science CBSE

Given that HCF 306 657 9 find the LCM 306 657 class 9 maths CBSE

The highest mountain peak in India is A Kanchenjunga class 9 social science CBSE

A piece of wire 20 cm long is bent into the form of class 9 maths CBSE

Difference Between Plant Cell and Animal Cell
