
Evaluate \[\sin {57^0} - \cos {33^0}\]
Answer
564.3k+ views
Hint: Firstly, it is a simple problem and we use the angle conversion in this method. We convert it into \[\sin ({90^0} - \theta )\] and simplify, we get the required answer. Further we note that \[\sin ({90^0} - \theta ) = \cos \theta \], it lies in the first quadrant. So that it takes positive values. If not, we use the trigonometric ratios to solve these questions that is by expressing trigonometric functions in terms of their complements. We can also express the trigonometric functions in terms of their supplements.
Complete step-by-step answer:
There are six trigonometric ratios, namely
Sine, cosine, tangent, cosecant, secant and cotangent.
Also remember, by convection, positive angles are measured in the anti-clockwise direction starting from the positive x axis. Domain ranges between -1 and 1 only. We use right angle triangles while defining the trigonometric relations. That is,\[\theta = {90^0}\]
Given,\[\sin {57^0} - \cos {33^0}\]
It can be written as,
\[ = \sin ({90^0} - {33^0}) - \cos {33^0}\]
Using, \[\sin ({90^0} - \theta ) = \cos \theta \], and substituting we get,
\[ = \cos {33^0} - \cos {33^0}\]
\[ = 0\]
Thus we get, \[\sin {57^0} - \cos {33^0} = 0\]
We can also convert \[\cos \theta \] into \[\sin \theta \] by using trigonometric ratios and solving the same as we did above, we will get the same answer.
So, the correct answer is “0”.
Note: The given problem is simple and straightforward. Simply using the trigonometric ratios and substituting. Convert \[\cos {33^0}\] and see the solution. you will get the same answer. That is we are going to convert \[\cos {33^0}\]as\[\cos {33^0} = \cos ({90^0} - {57^0}) = \sin {57^0}\]. Either way it’s going to cancel out again.Hence the solution is zero.
Complete step-by-step answer:
There are six trigonometric ratios, namely
Sine, cosine, tangent, cosecant, secant and cotangent.
Also remember, by convection, positive angles are measured in the anti-clockwise direction starting from the positive x axis. Domain ranges between -1 and 1 only. We use right angle triangles while defining the trigonometric relations. That is,\[\theta = {90^0}\]
Given,\[\sin {57^0} - \cos {33^0}\]
It can be written as,
\[ = \sin ({90^0} - {33^0}) - \cos {33^0}\]
Using, \[\sin ({90^0} - \theta ) = \cos \theta \], and substituting we get,
\[ = \cos {33^0} - \cos {33^0}\]
\[ = 0\]
Thus we get, \[\sin {57^0} - \cos {33^0} = 0\]
We can also convert \[\cos \theta \] into \[\sin \theta \] by using trigonometric ratios and solving the same as we did above, we will get the same answer.
So, the correct answer is “0”.
Note: The given problem is simple and straightforward. Simply using the trigonometric ratios and substituting. Convert \[\cos {33^0}\] and see the solution. you will get the same answer. That is we are going to convert \[\cos {33^0}\]as\[\cos {33^0} = \cos ({90^0} - {57^0}) = \sin {57^0}\]. Either way it’s going to cancel out again.Hence the solution is zero.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

