
Evaluate \[\mathop {\lim }\limits_{x \to \infty } \left[ {\dfrac{{2{x^2} - x - 6}}{{3{x^2} + 2x + 1}} + \dfrac{{x + 1}}{{{x^2} + 1}}} \right]\]
Answer
544.2k+ views
Hint:
Apply L'Hospital's rule to evaluate the equation as we have an indeterminate form \[\mathop {\lim }\limits_{x \to \infty } \] all we need to do is differentiate the numerator and differentiate the denominator and then take the limit. The limit when we divide one function by another is the same after we take the derivative of each function.
Complete step by step solution:
Let us write the given input to evaluate
\[\mathop {\lim }\limits_{x \to \infty } \left[ {\dfrac{{2{x^2} - x - 6}}{{3{x^2} + 2x + 1}} + \dfrac{{x + 1}}{{{x^2} + 1}}} \right]\]
The limit of a \[\dfrac{{sum}}{{difference}}\]is the \[\dfrac{{sum}}{{difference}}\]of limits:
\[\mathop {\lim }\limits_{x \to \infty } \left[ {\dfrac{{2{x^2} - x - 6}}{{3{x^2} + 2x + 1}} + \dfrac{{x + 1}}{{{x^2} + 1}}} \right]\]= \[\left[ {\mathop {\lim }\limits_{x \to \infty } \dfrac{{2{x^2} - x - 6}}{{3{x^2} + 2x + 1}} + \mathop {\lim }\limits_{x \to \infty } \dfrac{{x + 1}}{{{x^2} + 1}}} \right]\]
Multiply and divide by \[{x^2}\]:
\[\mathop {\lim }\limits_{x \to \infty } \dfrac{{2{x^2} - x - 6}}{{3{x^2} + 2x + 1}} + \mathop {\lim }\limits_{x \to \infty } \dfrac{{x + 1}}{{{x^2} + 1}} = \mathop {\lim }\limits_{x \to \infty } \dfrac{{2{x^2} - x - 6}}{{3{x^2} + 2x + 1}} + \mathop {\lim }\limits_{x \to \infty } \dfrac{{{x^2}\dfrac{{x + 1}}{{{x^2}}}}}{{{x^2}\dfrac{{{x^2} + 1}}{{{x^2}}}}}\]
Divide:
\[\mathop {\lim }\limits_{x \to \infty } \dfrac{{2{x^2} - x - 6}}{{3{x^2} + 2x + 1}} + \mathop {\lim }\limits_{x \to \infty } \dfrac{{x + 1}}{{{x^2} + 1}}\] = \[\mathop {\lim }\limits_{x \to \infty } \dfrac{{2{x^2} - x - 6}}{{3{x^2} + 2x + 1}} + \mathop {\lim }\limits_{x \to \infty } \dfrac{{\dfrac{1}{x} + \dfrac{1}{{{x^2}}}}}{{1 + \dfrac{1}{{{x^2}}}}}\]
The limits of the quotient are the quotient of limits:
\[\mathop {\lim }\limits_{x \to \infty } \dfrac{{2{x^2} - x - 6}}{{3{x^2} + 2x + 1}} + \mathop {\lim }\limits_{x \to \infty } \dfrac{{\dfrac{1}{x} + \dfrac{1}{{{x^2}}}}}{{1 + \dfrac{1}{{{x^2}}}}}\] = \[\mathop {\lim }\limits_{x \to \infty } \dfrac{{2{x^2} - x - 6}}{{3{x^2} + 2x + 1}} + \dfrac{{\mathop {\lim }\limits_{x \to \infty } \left( {\dfrac{1}{x} + \dfrac{1}{{{x^2}}}} \right)}}{{\mathop {\lim }\limits_{x \to \infty } \left( {1 + \dfrac{1}{{{x^2}}}} \right)}}\]
The limit of a \[\dfrac{{sum}}{{difference}}\]is the \[\dfrac{{sum}}{{difference}}\]of limits is
\[\mathop {\lim }\limits_{x \to \infty } \dfrac{{2{x^2} - x - 6}}{{3{x^2} + 2x + 1}} + \dfrac{{\mathop {\lim }\limits_{x \to \infty } \left( {\dfrac{1}{x} + \dfrac{1}{{{x^2}}}} \right)}}{{\mathop {\lim }\limits_{x \to \infty } \left( {1 + \dfrac{1}{{{x^2}}}} \right)}} + \dfrac{{\left( {\mathop {\lim }\limits_{x \to \infty } \dfrac{1}{{{x^2}}} + \mathop {\lim }\limits_{x \to \infty } \dfrac{1}{x}} \right)}}{{\mathop {\lim }\limits_{x \to \infty } \left( {1 + \dfrac{1}{{{x^2}}}} \right)}} = \mathop {\lim }\limits_{x \to \infty } \dfrac{{2{x^2} - x - 6}}{{3{x^2} + 2x + 1}}\]
The limit of a quotient is the quotient of limits:
\[\mathop {\lim }\limits_{x \to \infty } \dfrac{{2{x^2} - x - 6}}{{3{x^2} + 2x + 1}} + \dfrac{{\mathop {\lim }\limits_{x \to \infty } \dfrac{1}{x} + \mathop {\lim }\limits_{x \to \infty } \dfrac{1}{{{x^2}}}}}{{\mathop {\lim }\limits_{x \to \infty } \left( {1 + \dfrac{1}{{{x^2}}}} \right)}} + \dfrac{{\left( {\mathop {\lim }\limits_{x \to \infty } \dfrac{1}{{{x^2}}} + \dfrac{{\mathop {\lim }\limits_{x \to \infty } 1}}{{\mathop {\lim x}\limits_{x \to \infty } }}} \right)}}{{\mathop {\lim }\limits_{x \to \infty } \left( {1 + \dfrac{1}{{{x^2}}}} \right)}} = \mathop {\lim }\limits_{x \to \infty } \dfrac{{2{x^2} - x - 6}}{{3{x^2} + 2x + 1}}\]
The limit of a constant is equal to the constant:
\[\mathop {\lim }\limits_{x \to \infty } \dfrac{{2{x^2} - x - 6}}{{3{x^2} + 2x + 1}} + \dfrac{{\dfrac{{\mathop {\lim }\limits_{x \to \infty } 1}}{{\mathop {\lim }\limits_{x \to \infty } x}} + \mathop {\lim }\limits_{x \to \infty } \dfrac{1}{{{x^2}}}}}{{\mathop {\lim }\limits_{x \to \infty } \left( {1 + \dfrac{1}{{{x^2}}}} \right)}} + \dfrac{{\left( {\mathop {\lim }\limits_{x \to \infty } \dfrac{1}{{{x^2}}} + \dfrac{{\mathop {\lim }\limits_{x \to \infty } 1}}{{\mathop {\lim x}\limits_{x \to \infty } }}} \right)}}{{\mathop {\lim }\limits_{x \to \infty } \left( {1 + \dfrac{1}{{{x^2}}}} \right)}} = \mathop {\lim }\limits_{x \to \infty } \dfrac{{2{x^2} - x - 6}}{{3{x^2} + 2x + 1}}\]
Constant divided by maximum number which equals 0:
\[\mathop {\lim }\limits_{x \to \infty } \dfrac{{2{x^2} - x - 6}}{{3{x^2} + 2x + 1}} + \dfrac{{1\dfrac{1}{{\mathop {\lim }\limits_{x \to \infty } x}} + \mathop {\lim }\limits_{x \to \infty } \dfrac{1}{{{x^2}}}}}{{\mathop {\lim }\limits_{x \to \infty } \left( {1 + \dfrac{1}{{{x^2}}}} \right)}} = \mathop {\lim }\limits_{x \to \infty } \dfrac{{2{x^2} - x - 6}}{{3{x^2} + 2x + 1}} + \dfrac{{\mathop {\lim }\limits_{x \to \infty } \dfrac{1}{{{x^2}}} + 0}}{{\mathop {\lim }\limits_{x \to \infty } \left( {1 + \dfrac{1}{{{x^2}}}} \right)}}\]
The limit of a quotient is the quotient of limits:
\[\mathop {\lim }\limits_{x \to \infty } \dfrac{{2{x^2} - x - 6}}{{3{x^2} + 2x + 1}} + \dfrac{{\mathop {\lim }\limits_{x \to \infty } \dfrac{1}{{{x^2}}}}}{{\mathop {\lim }\limits_{x \to \infty } \left( {1 + \dfrac{1}{{{x^2}}}} \right)}} = \mathop {\lim }\limits_{x \to \infty } \dfrac{{2{x^2} - x - 6}}{{3{x^2} + 2x + 1}} + \dfrac{{\dfrac{{\mathop {\lim }\limits_{x \to \infty } 1}}{{\mathop {\lim {x^2}}\limits_{x \to \infty } }}}}{{\mathop {\lim }\limits_{x \to \infty } \left( {1 + \dfrac{1}{{{x^2}}}} \right)}}\]
The limit of a constant is equal to the constant:
\[\mathop {\lim }\limits_{x \to \infty } \dfrac{{2{x^2} - x - 6}}{{3{x^2} + 2x + 1}} + \dfrac{{\mathop {\lim }\limits_{x \to \infty } 1}}{{\mathop {\lim }\limits_{x \to \infty } {x^2}\left( {1 + \dfrac{1}{{{x^2}}}} \right)}} + \dfrac{1}{{\mathop {\lim }\limits_{x \to \infty } {x^2}\left( {1 + \dfrac{1}{{{x^2}}}} \right)}} = \mathop {\lim }\limits_{x \to \infty } \dfrac{{2{x^2} - x - 6}}{{3{x^2} + 2x + 1}}\]
Divide by highest denominator power:
= \[\dfrac{{2 - \dfrac{1}{x} - \dfrac{6}{{{x^2}}}}}{{3 + \dfrac{2}{x} + \dfrac{1}{{{x^2}}}}}\]
= \[\mathop {\lim }\limits_{x \to \infty } \left( {\dfrac{{2 - \dfrac{1}{x} - \dfrac{6}{{{x^2}}}}}{{3 + \dfrac{2}{x} + \dfrac{1}{{{x^2}}}}} + \dfrac{{x + 1}}{{{x^2} + 1}}} \right)\]
= \[\mathop {\lim }\limits_{x \to \infty } \left( {\dfrac{{2 - \dfrac{1}{x} - \dfrac{6}{{{x^2}}}}}{{3 + \dfrac{2}{x} + \dfrac{1}{{{x^2}}}}}} \right) + \mathop {\lim }\limits_{x \to \infty } \left( {\dfrac{{x + 1}}{{{x^2} + 1}}} \right)\]
\[\mathop {\lim }\limits_{x \to \infty } \left( {\dfrac{{2 - \dfrac{1}{x} - \dfrac{6}{{{x^2}}}}}{{3 + \dfrac{2}{x} + \dfrac{1}{{{x^2}}}}}} \right)\] = \[\dfrac{2}{3}\]
And
\[\mathop {\lim }\limits_{x \to \infty } \left( {\dfrac{{x + 1}}{{{x^2} + 1}}} \right)\]= 0
Hence, after simplifying we get the value as
= \[\dfrac{2}{3} + 0\]
= \[\dfrac{2}{3}\]
Therefore, after evaluating all the terms we get
\[\mathop {\lim }\limits_{x \to \infty } \left[ {\dfrac{{2{x^2} - x - 6}}{{3{x^2} + 2x + 1}} + \dfrac{{x + 1}}{{{x^2} + 1}}} \right]\] = \[\dfrac{2}{3}\]
Additional information:
Let us know the statement of L'Hospital's rule defines:
It says that the limit when we divide one function by another is the same after we take the derivative of each function
It is denoted as:
\[\mathop {\lim }\limits_{x \to c} \dfrac{{f(x)}}{{g(x)}} = \mathop {\lim }\limits_{x \to c} \dfrac{{f'(x)}}{{g'(x)}}\]
Formula used:
\[\mathop {\lim }\limits_{x \to c} \dfrac{{f(x)}}{{g(x)}} = \mathop {\lim }\limits_{x \to c} \dfrac{{f'(x)}}{{g'(x)}}\]
As where the limit of x is till infinity.
Note:
For a limit approaching the given value, the original functions must be differentiable on either side of value, but not necessarily at the value given. The limit of a quotient is equal to the quotient of the limits. The limit of a constant function is equal to the constant. The limit of a linear function is equal to the number x is approaching.
Apply L'Hospital's rule to evaluate the equation as we have an indeterminate form \[\mathop {\lim }\limits_{x \to \infty } \] all we need to do is differentiate the numerator and differentiate the denominator and then take the limit. The limit when we divide one function by another is the same after we take the derivative of each function.
Complete step by step solution:
Let us write the given input to evaluate
\[\mathop {\lim }\limits_{x \to \infty } \left[ {\dfrac{{2{x^2} - x - 6}}{{3{x^2} + 2x + 1}} + \dfrac{{x + 1}}{{{x^2} + 1}}} \right]\]
The limit of a \[\dfrac{{sum}}{{difference}}\]is the \[\dfrac{{sum}}{{difference}}\]of limits:
\[\mathop {\lim }\limits_{x \to \infty } \left[ {\dfrac{{2{x^2} - x - 6}}{{3{x^2} + 2x + 1}} + \dfrac{{x + 1}}{{{x^2} + 1}}} \right]\]= \[\left[ {\mathop {\lim }\limits_{x \to \infty } \dfrac{{2{x^2} - x - 6}}{{3{x^2} + 2x + 1}} + \mathop {\lim }\limits_{x \to \infty } \dfrac{{x + 1}}{{{x^2} + 1}}} \right]\]
Multiply and divide by \[{x^2}\]:
\[\mathop {\lim }\limits_{x \to \infty } \dfrac{{2{x^2} - x - 6}}{{3{x^2} + 2x + 1}} + \mathop {\lim }\limits_{x \to \infty } \dfrac{{x + 1}}{{{x^2} + 1}} = \mathop {\lim }\limits_{x \to \infty } \dfrac{{2{x^2} - x - 6}}{{3{x^2} + 2x + 1}} + \mathop {\lim }\limits_{x \to \infty } \dfrac{{{x^2}\dfrac{{x + 1}}{{{x^2}}}}}{{{x^2}\dfrac{{{x^2} + 1}}{{{x^2}}}}}\]
Divide:
\[\mathop {\lim }\limits_{x \to \infty } \dfrac{{2{x^2} - x - 6}}{{3{x^2} + 2x + 1}} + \mathop {\lim }\limits_{x \to \infty } \dfrac{{x + 1}}{{{x^2} + 1}}\] = \[\mathop {\lim }\limits_{x \to \infty } \dfrac{{2{x^2} - x - 6}}{{3{x^2} + 2x + 1}} + \mathop {\lim }\limits_{x \to \infty } \dfrac{{\dfrac{1}{x} + \dfrac{1}{{{x^2}}}}}{{1 + \dfrac{1}{{{x^2}}}}}\]
The limits of the quotient are the quotient of limits:
\[\mathop {\lim }\limits_{x \to \infty } \dfrac{{2{x^2} - x - 6}}{{3{x^2} + 2x + 1}} + \mathop {\lim }\limits_{x \to \infty } \dfrac{{\dfrac{1}{x} + \dfrac{1}{{{x^2}}}}}{{1 + \dfrac{1}{{{x^2}}}}}\] = \[\mathop {\lim }\limits_{x \to \infty } \dfrac{{2{x^2} - x - 6}}{{3{x^2} + 2x + 1}} + \dfrac{{\mathop {\lim }\limits_{x \to \infty } \left( {\dfrac{1}{x} + \dfrac{1}{{{x^2}}}} \right)}}{{\mathop {\lim }\limits_{x \to \infty } \left( {1 + \dfrac{1}{{{x^2}}}} \right)}}\]
The limit of a \[\dfrac{{sum}}{{difference}}\]is the \[\dfrac{{sum}}{{difference}}\]of limits is
\[\mathop {\lim }\limits_{x \to \infty } \dfrac{{2{x^2} - x - 6}}{{3{x^2} + 2x + 1}} + \dfrac{{\mathop {\lim }\limits_{x \to \infty } \left( {\dfrac{1}{x} + \dfrac{1}{{{x^2}}}} \right)}}{{\mathop {\lim }\limits_{x \to \infty } \left( {1 + \dfrac{1}{{{x^2}}}} \right)}} + \dfrac{{\left( {\mathop {\lim }\limits_{x \to \infty } \dfrac{1}{{{x^2}}} + \mathop {\lim }\limits_{x \to \infty } \dfrac{1}{x}} \right)}}{{\mathop {\lim }\limits_{x \to \infty } \left( {1 + \dfrac{1}{{{x^2}}}} \right)}} = \mathop {\lim }\limits_{x \to \infty } \dfrac{{2{x^2} - x - 6}}{{3{x^2} + 2x + 1}}\]
The limit of a quotient is the quotient of limits:
\[\mathop {\lim }\limits_{x \to \infty } \dfrac{{2{x^2} - x - 6}}{{3{x^2} + 2x + 1}} + \dfrac{{\mathop {\lim }\limits_{x \to \infty } \dfrac{1}{x} + \mathop {\lim }\limits_{x \to \infty } \dfrac{1}{{{x^2}}}}}{{\mathop {\lim }\limits_{x \to \infty } \left( {1 + \dfrac{1}{{{x^2}}}} \right)}} + \dfrac{{\left( {\mathop {\lim }\limits_{x \to \infty } \dfrac{1}{{{x^2}}} + \dfrac{{\mathop {\lim }\limits_{x \to \infty } 1}}{{\mathop {\lim x}\limits_{x \to \infty } }}} \right)}}{{\mathop {\lim }\limits_{x \to \infty } \left( {1 + \dfrac{1}{{{x^2}}}} \right)}} = \mathop {\lim }\limits_{x \to \infty } \dfrac{{2{x^2} - x - 6}}{{3{x^2} + 2x + 1}}\]
The limit of a constant is equal to the constant:
\[\mathop {\lim }\limits_{x \to \infty } \dfrac{{2{x^2} - x - 6}}{{3{x^2} + 2x + 1}} + \dfrac{{\dfrac{{\mathop {\lim }\limits_{x \to \infty } 1}}{{\mathop {\lim }\limits_{x \to \infty } x}} + \mathop {\lim }\limits_{x \to \infty } \dfrac{1}{{{x^2}}}}}{{\mathop {\lim }\limits_{x \to \infty } \left( {1 + \dfrac{1}{{{x^2}}}} \right)}} + \dfrac{{\left( {\mathop {\lim }\limits_{x \to \infty } \dfrac{1}{{{x^2}}} + \dfrac{{\mathop {\lim }\limits_{x \to \infty } 1}}{{\mathop {\lim x}\limits_{x \to \infty } }}} \right)}}{{\mathop {\lim }\limits_{x \to \infty } \left( {1 + \dfrac{1}{{{x^2}}}} \right)}} = \mathop {\lim }\limits_{x \to \infty } \dfrac{{2{x^2} - x - 6}}{{3{x^2} + 2x + 1}}\]
Constant divided by maximum number which equals 0:
\[\mathop {\lim }\limits_{x \to \infty } \dfrac{{2{x^2} - x - 6}}{{3{x^2} + 2x + 1}} + \dfrac{{1\dfrac{1}{{\mathop {\lim }\limits_{x \to \infty } x}} + \mathop {\lim }\limits_{x \to \infty } \dfrac{1}{{{x^2}}}}}{{\mathop {\lim }\limits_{x \to \infty } \left( {1 + \dfrac{1}{{{x^2}}}} \right)}} = \mathop {\lim }\limits_{x \to \infty } \dfrac{{2{x^2} - x - 6}}{{3{x^2} + 2x + 1}} + \dfrac{{\mathop {\lim }\limits_{x \to \infty } \dfrac{1}{{{x^2}}} + 0}}{{\mathop {\lim }\limits_{x \to \infty } \left( {1 + \dfrac{1}{{{x^2}}}} \right)}}\]
The limit of a quotient is the quotient of limits:
\[\mathop {\lim }\limits_{x \to \infty } \dfrac{{2{x^2} - x - 6}}{{3{x^2} + 2x + 1}} + \dfrac{{\mathop {\lim }\limits_{x \to \infty } \dfrac{1}{{{x^2}}}}}{{\mathop {\lim }\limits_{x \to \infty } \left( {1 + \dfrac{1}{{{x^2}}}} \right)}} = \mathop {\lim }\limits_{x \to \infty } \dfrac{{2{x^2} - x - 6}}{{3{x^2} + 2x + 1}} + \dfrac{{\dfrac{{\mathop {\lim }\limits_{x \to \infty } 1}}{{\mathop {\lim {x^2}}\limits_{x \to \infty } }}}}{{\mathop {\lim }\limits_{x \to \infty } \left( {1 + \dfrac{1}{{{x^2}}}} \right)}}\]
The limit of a constant is equal to the constant:
\[\mathop {\lim }\limits_{x \to \infty } \dfrac{{2{x^2} - x - 6}}{{3{x^2} + 2x + 1}} + \dfrac{{\mathop {\lim }\limits_{x \to \infty } 1}}{{\mathop {\lim }\limits_{x \to \infty } {x^2}\left( {1 + \dfrac{1}{{{x^2}}}} \right)}} + \dfrac{1}{{\mathop {\lim }\limits_{x \to \infty } {x^2}\left( {1 + \dfrac{1}{{{x^2}}}} \right)}} = \mathop {\lim }\limits_{x \to \infty } \dfrac{{2{x^2} - x - 6}}{{3{x^2} + 2x + 1}}\]
Divide by highest denominator power:
= \[\dfrac{{2 - \dfrac{1}{x} - \dfrac{6}{{{x^2}}}}}{{3 + \dfrac{2}{x} + \dfrac{1}{{{x^2}}}}}\]
= \[\mathop {\lim }\limits_{x \to \infty } \left( {\dfrac{{2 - \dfrac{1}{x} - \dfrac{6}{{{x^2}}}}}{{3 + \dfrac{2}{x} + \dfrac{1}{{{x^2}}}}} + \dfrac{{x + 1}}{{{x^2} + 1}}} \right)\]
= \[\mathop {\lim }\limits_{x \to \infty } \left( {\dfrac{{2 - \dfrac{1}{x} - \dfrac{6}{{{x^2}}}}}{{3 + \dfrac{2}{x} + \dfrac{1}{{{x^2}}}}}} \right) + \mathop {\lim }\limits_{x \to \infty } \left( {\dfrac{{x + 1}}{{{x^2} + 1}}} \right)\]
\[\mathop {\lim }\limits_{x \to \infty } \left( {\dfrac{{2 - \dfrac{1}{x} - \dfrac{6}{{{x^2}}}}}{{3 + \dfrac{2}{x} + \dfrac{1}{{{x^2}}}}}} \right)\] = \[\dfrac{2}{3}\]
And
\[\mathop {\lim }\limits_{x \to \infty } \left( {\dfrac{{x + 1}}{{{x^2} + 1}}} \right)\]= 0
Hence, after simplifying we get the value as
= \[\dfrac{2}{3} + 0\]
= \[\dfrac{2}{3}\]
Therefore, after evaluating all the terms we get
\[\mathop {\lim }\limits_{x \to \infty } \left[ {\dfrac{{2{x^2} - x - 6}}{{3{x^2} + 2x + 1}} + \dfrac{{x + 1}}{{{x^2} + 1}}} \right]\] = \[\dfrac{2}{3}\]
Additional information:
Let us know the statement of L'Hospital's rule defines:
It says that the limit when we divide one function by another is the same after we take the derivative of each function
It is denoted as:
\[\mathop {\lim }\limits_{x \to c} \dfrac{{f(x)}}{{g(x)}} = \mathop {\lim }\limits_{x \to c} \dfrac{{f'(x)}}{{g'(x)}}\]
Formula used:
\[\mathop {\lim }\limits_{x \to c} \dfrac{{f(x)}}{{g(x)}} = \mathop {\lim }\limits_{x \to c} \dfrac{{f'(x)}}{{g'(x)}}\]
As where the limit of x is till infinity.
Note:
For a limit approaching the given value, the original functions must be differentiable on either side of value, but not necessarily at the value given. The limit of a quotient is equal to the quotient of the limits. The limit of a constant function is equal to the constant. The limit of a linear function is equal to the number x is approaching.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

What is the difference between biodegradable and nonbiodegradable class 11 biology CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

Bond order ofO2 O2+ O2 and O22 is in order A O2 langle class 11 chemistry CBSE

Draw a labelled diagram of the human heart and label class 11 biology CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

