Answer

Verified

349.2k+ views

**Hint:**To evaluate the value of the given question, we will apply the limit and will check if we get the answer or not. If we do not get the answer, we will divide with a function $\left( x-1 \right)$ in the numerator and denominator of a given question to make calculation easy. After that we will get the limit function in the form of $\displaystyle \lim_{x \to a}\dfrac{{{x}^{n}}-{{a}^{n}}}{x-a}$ and the limit function $\displaystyle \lim_{x \to a}\dfrac{{{x}^{n}}-{{a}^{n}}}{x-a}$ is equal to $n{{a}^{n-1}}$. We will use this formula in the given question and will simplify to get the answer.

**Complete step by step answer:**

Since, the given limit function is:

$= \displaystyle \lim_{x \to 1}\dfrac{{{x}^{15}}-1}{{{x}^{10}}-1}$

Now, we will divide by $\left( x-1 \right)$ in the numerator and denominator of this limit function as:

$= \displaystyle \lim_{x \to 1}\dfrac{\left( \dfrac{{{x}^{15}}-1}{x-1} \right)}{\left( \dfrac{{{x}^{10}}-1}{x-1} \right)}$

We can write the above limit function as:

$= \dfrac{\displaystyle \lim_{x \to 1}\left( \dfrac{{{x}^{15}}-1}{x-1} \right)}{\displaystyle \lim_{x \to 1}\left( \dfrac{{{x}^{10}}-1}{x-1} \right)}$

Here, we get the limit function in the form of $\displaystyle \lim_{x \to a}\dfrac{{{x}^{n}}-{{a}^{n}}}{x-a}$ that is equal to $n{{a}^{n-1}}$. So, we will substitute $15$ for $n$ in the numerator and $10$ for $n$ in the denominator and will get $15{{\left( 1 \right)}^{15-1}}$ for numerator and $10{{\left( 1 \right)}^{10-1}}$ for denominator as:

$= \dfrac{15{{\left( 1 \right)}^{15-1}}}{10{{\left( 1 \right)}^{10-1}}}$

After doing required calculation in the above fraction as:

$= \dfrac{15{{\left( 1 \right)}^{14}}}{10{{\left( 1 \right)}^{9}}}$

As we know that any power of $1$ is always $1$. So, we will have from the above step as:

$= \dfrac{15\times \left( 1 \right)}{10\times \left( 1 \right)}$

The multiplication of any number with one always gives that number as:

$= \dfrac{15}{10}$

Now, we will simplify it into simplest form of fraction as:

$= \dfrac{3}{2}$

Hence, the value of limit function $\displaystyle \lim_{x \to 1}\dfrac{{{x}^{15}}-1}{{{x}^{10}}-1}$ is $\dfrac{3}{2}$.

**Note:**For any limit function, we can use some techniques to evaluate the value of it if the limit function provides its values in the form of $\dfrac{0}{0}$ after applying the limit. Here are some methods such as putting the value of the limit, factorization, rationalization, finding the least common denominator L-Hospital rule, etc.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Guru Purnima speech in English in 100 words class 7 english CBSE

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Select the word that is correctly spelled a Twelveth class 10 english CBSE