
Energy of an electron in the ground state of the hydrogen atom is $ - 2.18 \times {10^{ - 18}}J$. Calculate the ionization enthalpy of atomic hydrogen in terms of $Jmo{l^{ - 1}}$.
Answer
516.3k+ views
Hint: Ionization energy is the energy required to remove an electron from ground state to infinity. Thus, ionization enthalpy can be calculated as the difference between the energy of an electron in its ground state and the energy of an electron at infinity.
Complete step by step answer:
The ionization enthalpy can be defined as the amount of energy required to remove an electron from an isolated gaseous atom in its ground state to infinity.
Thus, it can be calculated as the difference between the energy of an electron in its ground state (say,${E_1}$) and the energy of an electron at infinity (${E_\infty }$). Mathematically,
${E_\infty } - {E_1}$
We are given that the energy of an electron in the ground state of the hydrogen atom is $ - 2.18 \times {10^{ - 18}}J$.
Thus, ${E_1}$ for hydrogen atom = $ - 2.18 \times {10^{ - 18}}J$.
Now, the energy of an electron at infinity is zero. This means, ${E_\infty }$ for hydrogen atom = 0.
Therefore, ionization enthalpy of atomic hydrogen (in joules):
${E_\infty } - {E_1} = 0 - ( - 2.18 \times {10^{ - 18}}J) = 2.18 \times {10^{ - 18}}J$.
Therefore, the energy required to remove an electron from a hydrogen atom in terms of joule is $2.18 \times {10^{ - 18}}J$. But we are asked the ionization enthalpy of atomic hydrogen in terms of $Jmo{l^{ - 1}}$. This means we need to find the energy required to remove 1 mole of electrons.
Since, 1 mole of any substance contains Avogadro's number of particles i.e., $6.022 \times {10^{23}}$ particles.
Therefore, the amount of energy required to remove 1 mole of electrons =
$2.18 \times {10^{ - 18}} \times 6.022 \times {10^{23}} = 13.30 \times {10^5}{\text{ }}Jmo{l^{ - 1}}$.
Hence, this is the required ionization enthalpy of hydrogen atom.
Note: Quantitatively, ionization enthalpy for an element, let X can be expressed as:
$X \to {X^ + } + {e^ - }$
The SI unit of ionization energy is ${\text{kJ mo}}{{\text{l}}^{{\text{ - 1}}}}$. Take care of the units while doing the calculations of this question.
Complete step by step answer:
The ionization enthalpy can be defined as the amount of energy required to remove an electron from an isolated gaseous atom in its ground state to infinity.
Thus, it can be calculated as the difference between the energy of an electron in its ground state (say,${E_1}$) and the energy of an electron at infinity (${E_\infty }$). Mathematically,
${E_\infty } - {E_1}$
We are given that the energy of an electron in the ground state of the hydrogen atom is $ - 2.18 \times {10^{ - 18}}J$.
Thus, ${E_1}$ for hydrogen atom = $ - 2.18 \times {10^{ - 18}}J$.
Now, the energy of an electron at infinity is zero. This means, ${E_\infty }$ for hydrogen atom = 0.
Therefore, ionization enthalpy of atomic hydrogen (in joules):
${E_\infty } - {E_1} = 0 - ( - 2.18 \times {10^{ - 18}}J) = 2.18 \times {10^{ - 18}}J$.
Therefore, the energy required to remove an electron from a hydrogen atom in terms of joule is $2.18 \times {10^{ - 18}}J$. But we are asked the ionization enthalpy of atomic hydrogen in terms of $Jmo{l^{ - 1}}$. This means we need to find the energy required to remove 1 mole of electrons.
Since, 1 mole of any substance contains Avogadro's number of particles i.e., $6.022 \times {10^{23}}$ particles.
Therefore, the amount of energy required to remove 1 mole of electrons =
$2.18 \times {10^{ - 18}} \times 6.022 \times {10^{23}} = 13.30 \times {10^5}{\text{ }}Jmo{l^{ - 1}}$.
Hence, this is the required ionization enthalpy of hydrogen atom.
Note: Quantitatively, ionization enthalpy for an element, let X can be expressed as:
$X \to {X^ + } + {e^ - }$
The SI unit of ionization energy is ${\text{kJ mo}}{{\text{l}}^{{\text{ - 1}}}}$. Take care of the units while doing the calculations of this question.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

Explain zero factorial class 11 maths CBSE
