
Draw a circle of radius 3 cm. Take a point at a distance of 5.5 cm from the center of the circle. From point \[P\], draw two tangents on the circle.
Answer
588.6k+ views
Hint: In this problem, first we need to draw a circle of radius 3 cm having a center at point \[O\]. Now, take a point \[P\] at a distance of 5.5 cm from the center of the circle. Draw a line joining the point \[O\] and \[P\]. Now draw a perpendicular bisector of the line \[OP\] that cuts \[OP\] at \[M\]. From point \[M\] draw a circle of radius \[OM\] which cuts the circle at points \[A\] and \[B\]. Next draw the line joining the points \[AP\] and \[BP\].
Complete step-by-step answer:
The steps for the construction of the tangents on the circle are as follows:
(a) Consider a point \[O\] as a center and draw a circle of radius 3 cm.
(b) Take a point \[P\] at a distance of 5.5 cm from the center of the circle.
(c) Draw a line joining the point \[O\] and point \[P\].
(d) Draw a perpendicular bisector the line \[OP\] that cuts \[OP\] at \[M\].
(e) From point \[M\] draw a circle of radius \[OM\] which cuts the circle of radius 3 cm at points \[A\] and \[B\].
(f) Draw the line joining the points \[AP\] and\[BP\], which represents the tangents on the circle as shown below.
Note: Take the perpendicular bisector of the line joining the points \[O\] and \[P\]. Point \[A\] and point \[B\] are the points of tangent on the circle.
Complete step-by-step answer:
The steps for the construction of the tangents on the circle are as follows:
(a) Consider a point \[O\] as a center and draw a circle of radius 3 cm.
(b) Take a point \[P\] at a distance of 5.5 cm from the center of the circle.
(c) Draw a line joining the point \[O\] and point \[P\].
(d) Draw a perpendicular bisector the line \[OP\] that cuts \[OP\] at \[M\].
(e) From point \[M\] draw a circle of radius \[OM\] which cuts the circle of radius 3 cm at points \[A\] and \[B\].
(f) Draw the line joining the points \[AP\] and\[BP\], which represents the tangents on the circle as shown below.
Note: Take the perpendicular bisector of the line joining the points \[O\] and \[P\]. Point \[A\] and point \[B\] are the points of tangent on the circle.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

What is the Full Form of ISI and RAW

