How does the resistance of a conductor depend on:
Length of the conductor?
Area of cross-section of the conductor?
Temperature of the conductor?
Answer
258.9k+ views
Hint: Resistance is the value of the opposition to the current flow in an electrical circuit. It is measured in Ohms. Thus, it is described well by Ohm’s Law. It is the ratio of voltage and current. Resistance also has a relation with the length, area of a conductor, and also it varies with temperature.
Complete step-by-step solution:
Resistance may be a measure of the opposition to the current flow in a circuit. Resistance is measured in ohms, symbolized by the Greek letter omega (Ω)
a) Length:
Resistance is directly proportional to the length of the conductor. So, as the length increases, the magnitude of resistance increases.
b) Cross-sectional area:
Resistance is inversely proportional to the cross-sectional area of the conductor. Thus, the resistance of the conductor decreased with the decrease in cross-sectional area.
c) Temperature:
Resistance is directly proportional to the temperature of the conductor. If the temperature is increased, the resistance is additionally increased.
Note:It is vital to notice that electrical conductivity and resistivity are inversely proportional, meaning that the more conductive something is that the less resistive it will be. By utilizing the resistance of a conductor, light is often created in an incandescent light bulb. In an incandescent light bulb, there's a wire filament that's a particular length and width, thus providing a particular resistance. If this resistance is simply right, the present flowing through the wire is slowed only enough, no end as a result of an excessive amount of resistance, that the filament heats up to the purpose that it glows.
Complete step-by-step solution:
Resistance may be a measure of the opposition to the current flow in a circuit. Resistance is measured in ohms, symbolized by the Greek letter omega (Ω)
a) Length:
Resistance is directly proportional to the length of the conductor. So, as the length increases, the magnitude of resistance increases.
b) Cross-sectional area:
Resistance is inversely proportional to the cross-sectional area of the conductor. Thus, the resistance of the conductor decreased with the decrease in cross-sectional area.
c) Temperature:
Resistance is directly proportional to the temperature of the conductor. If the temperature is increased, the resistance is additionally increased.
Note:It is vital to notice that electrical conductivity and resistivity are inversely proportional, meaning that the more conductive something is that the less resistive it will be. By utilizing the resistance of a conductor, light is often created in an incandescent light bulb. In an incandescent light bulb, there's a wire filament that's a particular length and width, thus providing a particular resistance. If this resistance is simply right, the present flowing through the wire is slowed only enough, no end as a result of an excessive amount of resistance, that the filament heats up to the purpose that it glows.
Last updated date: 30th Sep 2023
•
Total views: 258.9k
•
Views today: 6.58k
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations

10 Examples of Friction in Our Daily Life

Difference between hardware and software

What is the Full Form of DNA and RNA

10 Advantages and Disadvantages of Plastic

What are the Difference Between Acute and Chronic Disease

Trending doubts
How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE

The poet says Beauty is heard in Can you hear beauty class 6 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

What is the past tense of read class 10 english CBSE

The equation xxx + 2 is satisfied when x is equal to class 10 maths CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
