
Dimensional formula of pressure $\times$ volume =
Answer
572.7k+ views
Hint: The dimensional formula for any physical quantity is the formula for the unit of the same quantity in terms of the fundamental units. The fundamental units are the base units, which are independent units in the unit system. The derived units are expressed in terms of the fundamental units.
Complete step by step answer:
Any physical quantity is expressed in terms of its fundamental unit, this expression is known as dimensional formula of the physical quantity. Dimensional formula is generally represented in terms of mass, kilogram, time and temperature.
The pressure is the fraction of the force and area. Thus, the unit of pressure is Newton per meter. The SI unit of the pressure is Pascal (Pa).
The pressure is also expressed as:
$\Rightarrow P=\dfrac{N}{{{m}^{2}}}$
Substituting the units of above quantities:
$\begin{align}
& \Rightarrow \text{Pa=}\dfrac{\text{N}}{{{\text{m}}^{\text{2}}}} \\
& \Rightarrow \text{Pa=}\dfrac{\text{kg }\!\!\times\!\!\text{ m }\!\!\times\!\!\text{ }{{\text{s}}^{\text{-2}}}}{{{\text{m}}^{\text{2}}}} \\
& \Rightarrow \text{Pa}=\text{kg }\!\!\times\!\!\text{ }{{\text{m}}^{-1}}\text{ }\!\!\times\!\!\text{ }{{\text{s}}^{\text{-2}}} \\
\end{align}$
The dimension of the pressure is given as:
$\Rightarrow \left[ {{M}^{1}}{{L}^{-1}}{{T}^{-2}} \right]$
The volume of the object is given as:
$\Rightarrow V={{l}^{3}}$
The SI unit of length is meter.
So, the SI unit of volume is cubic meters.
The dimension of volume is,
$\Rightarrow \left[ {{M}^{0}}{{L}^{3}}{{T}^{0}} \right]$
Dimensional formula of pressure ×volume is given as:
$\begin{align}
& \Rightarrow P\times V=\left[ {{M}^{1}}{{L}^{-1}}{{T}^{-2}} \right]\times \left[ {{M}^{0}}{{L}^{3}}{{T}^{0}} \right] \\
& \Rightarrow P\times V=\left[ {{M}^{1}}{{L}^{2}}{{T}^{-2}} \right] \\
\end{align}$
The dimension of work is:
$\left[ {{M}^{1}}{{L}^{2}}{{T}^{-2}} \right]$
The dimension of force is:
$\left[ {{M}^{1}}{{L}^{1}}{{T}^{-2}} \right]$
The dimension of momentum is:
$\left[ {{M}^{1}}{{L}^{2}}{{T}^{-1}} \right]$
The dimension of modulus of rigidity is:
$\left[ {{M}^{1}}{{L}^{-1}}{{T}^{-2}} \right]$
Correct option is A.
Note:
Another method to solve above question:
Pressure × Volume has unit as:
$\begin{align}
& \Rightarrow \text{Pa }\!\!\times\!\!\text{ }{{\text{m}}^{\text{3}}}\text{=}\dfrac{\text{N}}{{{\text{m}}^{\text{2}}}}\text{ }\!\!\times\!\!\text{ }{{\text{m}}^{\text{3}}} \\
& \Rightarrow \text{Pa }\!\!\times\!\!\text{ }{{\text{m}}^{\text{3}}}\text{=N}\times m \\
& \Rightarrow \text{Pa }\!\!\times\!\!\text{ }{{\text{m}}^{\text{3}}}\text{=kg }\!\!\times\!\!\text{ m }\!\!\times\!\!\text{ }{{\text{s}}^{\text{-2}}}
\end{align}$
So, Dimension formula is given as:
$\left[ {{M}^{1}}{{L}^{2}}{{T}^{-2}} \right]$
Complete step by step answer:
Any physical quantity is expressed in terms of its fundamental unit, this expression is known as dimensional formula of the physical quantity. Dimensional formula is generally represented in terms of mass, kilogram, time and temperature.
The pressure is the fraction of the force and area. Thus, the unit of pressure is Newton per meter. The SI unit of the pressure is Pascal (Pa).
The pressure is also expressed as:
$\Rightarrow P=\dfrac{N}{{{m}^{2}}}$
Substituting the units of above quantities:
$\begin{align}
& \Rightarrow \text{Pa=}\dfrac{\text{N}}{{{\text{m}}^{\text{2}}}} \\
& \Rightarrow \text{Pa=}\dfrac{\text{kg }\!\!\times\!\!\text{ m }\!\!\times\!\!\text{ }{{\text{s}}^{\text{-2}}}}{{{\text{m}}^{\text{2}}}} \\
& \Rightarrow \text{Pa}=\text{kg }\!\!\times\!\!\text{ }{{\text{m}}^{-1}}\text{ }\!\!\times\!\!\text{ }{{\text{s}}^{\text{-2}}} \\
\end{align}$
The dimension of the pressure is given as:
$\Rightarrow \left[ {{M}^{1}}{{L}^{-1}}{{T}^{-2}} \right]$
The volume of the object is given as:
$\Rightarrow V={{l}^{3}}$
The SI unit of length is meter.
So, the SI unit of volume is cubic meters.
The dimension of volume is,
$\Rightarrow \left[ {{M}^{0}}{{L}^{3}}{{T}^{0}} \right]$
Dimensional formula of pressure ×volume is given as:
$\begin{align}
& \Rightarrow P\times V=\left[ {{M}^{1}}{{L}^{-1}}{{T}^{-2}} \right]\times \left[ {{M}^{0}}{{L}^{3}}{{T}^{0}} \right] \\
& \Rightarrow P\times V=\left[ {{M}^{1}}{{L}^{2}}{{T}^{-2}} \right] \\
\end{align}$
The dimension of work is:
$\left[ {{M}^{1}}{{L}^{2}}{{T}^{-2}} \right]$
The dimension of force is:
$\left[ {{M}^{1}}{{L}^{1}}{{T}^{-2}} \right]$
The dimension of momentum is:
$\left[ {{M}^{1}}{{L}^{2}}{{T}^{-1}} \right]$
The dimension of modulus of rigidity is:
$\left[ {{M}^{1}}{{L}^{-1}}{{T}^{-2}} \right]$
Correct option is A.
Note:
Another method to solve above question:
Pressure × Volume has unit as:
$\begin{align}
& \Rightarrow \text{Pa }\!\!\times\!\!\text{ }{{\text{m}}^{\text{3}}}\text{=}\dfrac{\text{N}}{{{\text{m}}^{\text{2}}}}\text{ }\!\!\times\!\!\text{ }{{\text{m}}^{\text{3}}} \\
& \Rightarrow \text{Pa }\!\!\times\!\!\text{ }{{\text{m}}^{\text{3}}}\text{=N}\times m \\
& \Rightarrow \text{Pa }\!\!\times\!\!\text{ }{{\text{m}}^{\text{3}}}\text{=kg }\!\!\times\!\!\text{ m }\!\!\times\!\!\text{ }{{\text{s}}^{\text{-2}}}
\end{align}$
So, Dimension formula is given as:
$\left[ {{M}^{1}}{{L}^{2}}{{T}^{-2}} \right]$
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

