
Differentiate the following function with respect to x.
For the function f(x)=$\dfrac{{{x}^{100}}}{100}+\dfrac{{{x}^{99}}}{99}+.....+\dfrac{{{x}^{2}}}{2}+x+1.$ Prove that f’(1)=100f’(0).
Answer
604.8k+ views
Hint: Find differentiation of f(x) by using identity $\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}}$ then relate f’(1) and f’(0).
Complete step-by-step answer:
We have function given as;
f(x)=$\dfrac{{{x}^{100}}}{100}+\dfrac{{{x}^{99}}}{99}+.....+\dfrac{{{x}^{2}}}{2}+x+1..........\left( 1 \right)$
As, we have to prove
f ’(1)=100 f ’(0), so we need to calculate the first differentiation of f (x) or f ’(x).
Let us differentiate equation (1) with respect to x
$\dfrac{d}{dx}f(x)=f'(x)=\dfrac{d}{dx}\left( \dfrac{{{x}^{100}}}{100}+\dfrac{{{x}^{99}}}{99}+.....\dfrac{{{x}^{2}}}{2}+x+1 \right)$
As we have property of differentiation that
$\dfrac{d}{dx}\left( {{f}_{1}}\left( x \right)+{{f}_{2}}\left( x \right)+.......{{f}_{n}}\left( x \right) \right)=\dfrac{d}{dx}\left( \left( {{f}_{1}}\left( x \right) \right)+\dfrac{d}{dx}\left( {{f}_{2}}\left( x \right) \right)+.......\dfrac{d}{dx}\left( {{f}_{n}}\left( x \right) \right) \right)$
Using the above property, we can write f ’(x) as
$f'\left( x \right)=\dfrac{d}{dx}\left( \dfrac{{{x}^{100}}}{100} \right)+\dfrac{d}{dx}\left( \dfrac{{{x}^{99}}}{99} \right)+\dfrac{d}{dx}\left( \dfrac{{{x}^{98}}}{98} \right)+......\dfrac{d}{dx}\left( \dfrac{{{x}^{2}}}{2} \right)+\dfrac{d}{dx}\left( x \right)+\dfrac{d}{dx}\left( 1 \right)$
We have property of differentiation as
$\dfrac{d}{dx}\left( cf\left( x \right) \right)=c\dfrac{d}{dx}f\left( x \right)$ where c = constant
$\dfrac{d}{dx}\left( \text{constant} \right)=0$
Applying both the above properties with equation f ‘(x), we get;
$f'\left( x \right)=\dfrac{1}{100}\dfrac{d}{dx}\left( {{x}^{100}} \right)+\dfrac{1}{99}\dfrac{d}{dx}\left( {{x}^{99}} \right)+.....\dfrac{1}{2}\dfrac{d}{dx}\left( {{x}^{2}} \right)+\dfrac{d}{dx}\left( x \right)+0........\left( 2 \right)$
Now, we know differentiation of ${{x}^{n}}\text{ is }n{{x}^{n-1}}\text{ or }\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}}$
Using the above identity to the equation (2), we get;
$f'\left( x \right)=\dfrac{100}{100}{{x}^{99}}+\dfrac{99}{99}{{x}^{98}}+\dfrac{98}{98}{{x}^{97}}.....\dfrac{2}{2}{{x}^{1}}+1$
On simplifying the above equation, we get;
$f'\left( x \right)={{x}^{99}}+{{x}^{98}}+{{x}^{97}}.....{{x}^{1}}+1............\left( 3 \right)$
Now, coming to the question, we have to prove that
f ‘ (1) = 100 f ‘ (0)……………….(4)
Here, LHS past can be written from the equation (3) by just putting x=1 to both sides, we get;
$\begin{align}
& f'\left( 1 \right)=\left( {{1}^{99}} \right)+\left( {{1}^{98}} \right)+\left( {{1}^{97}} \right)+.....1+1 \\
& f'\left( 1 \right)=\dfrac{\left( 1+1+1+....1 \right)}{100times} \\
& f'\left( 1 \right)=100 \\
\end{align}$
For RHS part i.e. 100 f ‘ (0), we can get f ‘ (0) by just putting x = 0 in equation (3)
$\begin{align}
& f'\left( 0 \right)={{\left( 0 \right)}^{99}}+{{\left( 0 \right)}^{98}}+{{\left( 0 \right)}^{97}}.....0+1 \\
& f'\left( 0 \right)=1 \\
\end{align}$
RHS part is given as 100 f ‘ (0); Therefore,
RHS = f ‘ (0) = 100……………(6)
From equation (5) and (6), we get that the right hand side of both the equations are equal which means left should also be equal. Hence,
f '(1) =100 f ‘ (0)
Hence, Proved.
Note: One can go wrong while counting the number of 1’s in equation (5). We need to relate it with the powers given in equation (3) i.e. from 99 to 0 (powers) which in total is 100. Hence, the number of terms in f ‘ (x) will be 100.
One can go wrong when he/she tries to calculate first f (0) and f (1) from the given function i.e.
f (0) = 1 and
$f\left( 1 \right)=\dfrac{1}{100}+\dfrac{1}{99}+....1$
And now differentiate the above f (0) and f (1) and will get f ‘ (0) = 0 and f ‘ (1) = 0 which is wrong.
Hence, if we need to find f ‘ (constant) if f (x) is given, then first we have to find f ‘ (x), after that put x = constant get f ‘ (constant).
Complete step-by-step answer:
We have function given as;
f(x)=$\dfrac{{{x}^{100}}}{100}+\dfrac{{{x}^{99}}}{99}+.....+\dfrac{{{x}^{2}}}{2}+x+1..........\left( 1 \right)$
As, we have to prove
f ’(1)=100 f ’(0), so we need to calculate the first differentiation of f (x) or f ’(x).
Let us differentiate equation (1) with respect to x
$\dfrac{d}{dx}f(x)=f'(x)=\dfrac{d}{dx}\left( \dfrac{{{x}^{100}}}{100}+\dfrac{{{x}^{99}}}{99}+.....\dfrac{{{x}^{2}}}{2}+x+1 \right)$
As we have property of differentiation that
$\dfrac{d}{dx}\left( {{f}_{1}}\left( x \right)+{{f}_{2}}\left( x \right)+.......{{f}_{n}}\left( x \right) \right)=\dfrac{d}{dx}\left( \left( {{f}_{1}}\left( x \right) \right)+\dfrac{d}{dx}\left( {{f}_{2}}\left( x \right) \right)+.......\dfrac{d}{dx}\left( {{f}_{n}}\left( x \right) \right) \right)$
Using the above property, we can write f ’(x) as
$f'\left( x \right)=\dfrac{d}{dx}\left( \dfrac{{{x}^{100}}}{100} \right)+\dfrac{d}{dx}\left( \dfrac{{{x}^{99}}}{99} \right)+\dfrac{d}{dx}\left( \dfrac{{{x}^{98}}}{98} \right)+......\dfrac{d}{dx}\left( \dfrac{{{x}^{2}}}{2} \right)+\dfrac{d}{dx}\left( x \right)+\dfrac{d}{dx}\left( 1 \right)$
We have property of differentiation as
$\dfrac{d}{dx}\left( cf\left( x \right) \right)=c\dfrac{d}{dx}f\left( x \right)$ where c = constant
$\dfrac{d}{dx}\left( \text{constant} \right)=0$
Applying both the above properties with equation f ‘(x), we get;
$f'\left( x \right)=\dfrac{1}{100}\dfrac{d}{dx}\left( {{x}^{100}} \right)+\dfrac{1}{99}\dfrac{d}{dx}\left( {{x}^{99}} \right)+.....\dfrac{1}{2}\dfrac{d}{dx}\left( {{x}^{2}} \right)+\dfrac{d}{dx}\left( x \right)+0........\left( 2 \right)$
Now, we know differentiation of ${{x}^{n}}\text{ is }n{{x}^{n-1}}\text{ or }\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}}$
Using the above identity to the equation (2), we get;
$f'\left( x \right)=\dfrac{100}{100}{{x}^{99}}+\dfrac{99}{99}{{x}^{98}}+\dfrac{98}{98}{{x}^{97}}.....\dfrac{2}{2}{{x}^{1}}+1$
On simplifying the above equation, we get;
$f'\left( x \right)={{x}^{99}}+{{x}^{98}}+{{x}^{97}}.....{{x}^{1}}+1............\left( 3 \right)$
Now, coming to the question, we have to prove that
f ‘ (1) = 100 f ‘ (0)……………….(4)
Here, LHS past can be written from the equation (3) by just putting x=1 to both sides, we get;
$\begin{align}
& f'\left( 1 \right)=\left( {{1}^{99}} \right)+\left( {{1}^{98}} \right)+\left( {{1}^{97}} \right)+.....1+1 \\
& f'\left( 1 \right)=\dfrac{\left( 1+1+1+....1 \right)}{100times} \\
& f'\left( 1 \right)=100 \\
\end{align}$
For RHS part i.e. 100 f ‘ (0), we can get f ‘ (0) by just putting x = 0 in equation (3)
$\begin{align}
& f'\left( 0 \right)={{\left( 0 \right)}^{99}}+{{\left( 0 \right)}^{98}}+{{\left( 0 \right)}^{97}}.....0+1 \\
& f'\left( 0 \right)=1 \\
\end{align}$
RHS part is given as 100 f ‘ (0); Therefore,
RHS = f ‘ (0) = 100……………(6)
From equation (5) and (6), we get that the right hand side of both the equations are equal which means left should also be equal. Hence,
f '(1) =100 f ‘ (0)
Hence, Proved.
Note: One can go wrong while counting the number of 1’s in equation (5). We need to relate it with the powers given in equation (3) i.e. from 99 to 0 (powers) which in total is 100. Hence, the number of terms in f ‘ (x) will be 100.
One can go wrong when he/she tries to calculate first f (0) and f (1) from the given function i.e.
f (0) = 1 and
$f\left( 1 \right)=\dfrac{1}{100}+\dfrac{1}{99}+....1$
And now differentiate the above f (0) and f (1) and will get f ‘ (0) = 0 and f ‘ (1) = 0 which is wrong.
Hence, if we need to find f ‘ (constant) if f (x) is given, then first we have to find f ‘ (x), after that put x = constant get f ‘ (constant).
Recently Updated Pages
Why is there a time difference of about 5 hours between class 10 social science CBSE

In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

