Answer
Verified
495k+ views
Hint: Find differentiation of f(x) by using identity $\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}}$ then relate f’(1) and f’(0).
Complete step-by-step answer:
We have function given as;
f(x)=$\dfrac{{{x}^{100}}}{100}+\dfrac{{{x}^{99}}}{99}+.....+\dfrac{{{x}^{2}}}{2}+x+1..........\left( 1 \right)$
As, we have to prove
f ’(1)=100 f ’(0), so we need to calculate the first differentiation of f (x) or f ’(x).
Let us differentiate equation (1) with respect to x
$\dfrac{d}{dx}f(x)=f'(x)=\dfrac{d}{dx}\left( \dfrac{{{x}^{100}}}{100}+\dfrac{{{x}^{99}}}{99}+.....\dfrac{{{x}^{2}}}{2}+x+1 \right)$
As we have property of differentiation that
$\dfrac{d}{dx}\left( {{f}_{1}}\left( x \right)+{{f}_{2}}\left( x \right)+.......{{f}_{n}}\left( x \right) \right)=\dfrac{d}{dx}\left( \left( {{f}_{1}}\left( x \right) \right)+\dfrac{d}{dx}\left( {{f}_{2}}\left( x \right) \right)+.......\dfrac{d}{dx}\left( {{f}_{n}}\left( x \right) \right) \right)$
Using the above property, we can write f ’(x) as
$f'\left( x \right)=\dfrac{d}{dx}\left( \dfrac{{{x}^{100}}}{100} \right)+\dfrac{d}{dx}\left( \dfrac{{{x}^{99}}}{99} \right)+\dfrac{d}{dx}\left( \dfrac{{{x}^{98}}}{98} \right)+......\dfrac{d}{dx}\left( \dfrac{{{x}^{2}}}{2} \right)+\dfrac{d}{dx}\left( x \right)+\dfrac{d}{dx}\left( 1 \right)$
We have property of differentiation as
$\dfrac{d}{dx}\left( cf\left( x \right) \right)=c\dfrac{d}{dx}f\left( x \right)$ where c = constant
$\dfrac{d}{dx}\left( \text{constant} \right)=0$
Applying both the above properties with equation f ‘(x), we get;
$f'\left( x \right)=\dfrac{1}{100}\dfrac{d}{dx}\left( {{x}^{100}} \right)+\dfrac{1}{99}\dfrac{d}{dx}\left( {{x}^{99}} \right)+.....\dfrac{1}{2}\dfrac{d}{dx}\left( {{x}^{2}} \right)+\dfrac{d}{dx}\left( x \right)+0........\left( 2 \right)$
Now, we know differentiation of ${{x}^{n}}\text{ is }n{{x}^{n-1}}\text{ or }\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}}$
Using the above identity to the equation (2), we get;
$f'\left( x \right)=\dfrac{100}{100}{{x}^{99}}+\dfrac{99}{99}{{x}^{98}}+\dfrac{98}{98}{{x}^{97}}.....\dfrac{2}{2}{{x}^{1}}+1$
On simplifying the above equation, we get;
$f'\left( x \right)={{x}^{99}}+{{x}^{98}}+{{x}^{97}}.....{{x}^{1}}+1............\left( 3 \right)$
Now, coming to the question, we have to prove that
f ‘ (1) = 100 f ‘ (0)……………….(4)
Here, LHS past can be written from the equation (3) by just putting x=1 to both sides, we get;
$\begin{align}
& f'\left( 1 \right)=\left( {{1}^{99}} \right)+\left( {{1}^{98}} \right)+\left( {{1}^{97}} \right)+.....1+1 \\
& f'\left( 1 \right)=\dfrac{\left( 1+1+1+....1 \right)}{100times} \\
& f'\left( 1 \right)=100 \\
\end{align}$
For RHS part i.e. 100 f ‘ (0), we can get f ‘ (0) by just putting x = 0 in equation (3)
$\begin{align}
& f'\left( 0 \right)={{\left( 0 \right)}^{99}}+{{\left( 0 \right)}^{98}}+{{\left( 0 \right)}^{97}}.....0+1 \\
& f'\left( 0 \right)=1 \\
\end{align}$
RHS part is given as 100 f ‘ (0); Therefore,
RHS = f ‘ (0) = 100……………(6)
From equation (5) and (6), we get that the right hand side of both the equations are equal which means left should also be equal. Hence,
f '(1) =100 f ‘ (0)
Hence, Proved.
Note: One can go wrong while counting the number of 1’s in equation (5). We need to relate it with the powers given in equation (3) i.e. from 99 to 0 (powers) which in total is 100. Hence, the number of terms in f ‘ (x) will be 100.
One can go wrong when he/she tries to calculate first f (0) and f (1) from the given function i.e.
f (0) = 1 and
$f\left( 1 \right)=\dfrac{1}{100}+\dfrac{1}{99}+....1$
And now differentiate the above f (0) and f (1) and will get f ‘ (0) = 0 and f ‘ (1) = 0 which is wrong.
Hence, if we need to find f ‘ (constant) if f (x) is given, then first we have to find f ‘ (x), after that put x = constant get f ‘ (constant).
Complete step-by-step answer:
We have function given as;
f(x)=$\dfrac{{{x}^{100}}}{100}+\dfrac{{{x}^{99}}}{99}+.....+\dfrac{{{x}^{2}}}{2}+x+1..........\left( 1 \right)$
As, we have to prove
f ’(1)=100 f ’(0), so we need to calculate the first differentiation of f (x) or f ’(x).
Let us differentiate equation (1) with respect to x
$\dfrac{d}{dx}f(x)=f'(x)=\dfrac{d}{dx}\left( \dfrac{{{x}^{100}}}{100}+\dfrac{{{x}^{99}}}{99}+.....\dfrac{{{x}^{2}}}{2}+x+1 \right)$
As we have property of differentiation that
$\dfrac{d}{dx}\left( {{f}_{1}}\left( x \right)+{{f}_{2}}\left( x \right)+.......{{f}_{n}}\left( x \right) \right)=\dfrac{d}{dx}\left( \left( {{f}_{1}}\left( x \right) \right)+\dfrac{d}{dx}\left( {{f}_{2}}\left( x \right) \right)+.......\dfrac{d}{dx}\left( {{f}_{n}}\left( x \right) \right) \right)$
Using the above property, we can write f ’(x) as
$f'\left( x \right)=\dfrac{d}{dx}\left( \dfrac{{{x}^{100}}}{100} \right)+\dfrac{d}{dx}\left( \dfrac{{{x}^{99}}}{99} \right)+\dfrac{d}{dx}\left( \dfrac{{{x}^{98}}}{98} \right)+......\dfrac{d}{dx}\left( \dfrac{{{x}^{2}}}{2} \right)+\dfrac{d}{dx}\left( x \right)+\dfrac{d}{dx}\left( 1 \right)$
We have property of differentiation as
$\dfrac{d}{dx}\left( cf\left( x \right) \right)=c\dfrac{d}{dx}f\left( x \right)$ where c = constant
$\dfrac{d}{dx}\left( \text{constant} \right)=0$
Applying both the above properties with equation f ‘(x), we get;
$f'\left( x \right)=\dfrac{1}{100}\dfrac{d}{dx}\left( {{x}^{100}} \right)+\dfrac{1}{99}\dfrac{d}{dx}\left( {{x}^{99}} \right)+.....\dfrac{1}{2}\dfrac{d}{dx}\left( {{x}^{2}} \right)+\dfrac{d}{dx}\left( x \right)+0........\left( 2 \right)$
Now, we know differentiation of ${{x}^{n}}\text{ is }n{{x}^{n-1}}\text{ or }\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}}$
Using the above identity to the equation (2), we get;
$f'\left( x \right)=\dfrac{100}{100}{{x}^{99}}+\dfrac{99}{99}{{x}^{98}}+\dfrac{98}{98}{{x}^{97}}.....\dfrac{2}{2}{{x}^{1}}+1$
On simplifying the above equation, we get;
$f'\left( x \right)={{x}^{99}}+{{x}^{98}}+{{x}^{97}}.....{{x}^{1}}+1............\left( 3 \right)$
Now, coming to the question, we have to prove that
f ‘ (1) = 100 f ‘ (0)……………….(4)
Here, LHS past can be written from the equation (3) by just putting x=1 to both sides, we get;
$\begin{align}
& f'\left( 1 \right)=\left( {{1}^{99}} \right)+\left( {{1}^{98}} \right)+\left( {{1}^{97}} \right)+.....1+1 \\
& f'\left( 1 \right)=\dfrac{\left( 1+1+1+....1 \right)}{100times} \\
& f'\left( 1 \right)=100 \\
\end{align}$
For RHS part i.e. 100 f ‘ (0), we can get f ‘ (0) by just putting x = 0 in equation (3)
$\begin{align}
& f'\left( 0 \right)={{\left( 0 \right)}^{99}}+{{\left( 0 \right)}^{98}}+{{\left( 0 \right)}^{97}}.....0+1 \\
& f'\left( 0 \right)=1 \\
\end{align}$
RHS part is given as 100 f ‘ (0); Therefore,
RHS = f ‘ (0) = 100……………(6)
From equation (5) and (6), we get that the right hand side of both the equations are equal which means left should also be equal. Hence,
f '(1) =100 f ‘ (0)
Hence, Proved.
Note: One can go wrong while counting the number of 1’s in equation (5). We need to relate it with the powers given in equation (3) i.e. from 99 to 0 (powers) which in total is 100. Hence, the number of terms in f ‘ (x) will be 100.
One can go wrong when he/she tries to calculate first f (0) and f (1) from the given function i.e.
f (0) = 1 and
$f\left( 1 \right)=\dfrac{1}{100}+\dfrac{1}{99}+....1$
And now differentiate the above f (0) and f (1) and will get f ‘ (0) = 0 and f ‘ (1) = 0 which is wrong.
Hence, if we need to find f ‘ (constant) if f (x) is given, then first we have to find f ‘ (x), after that put x = constant get f ‘ (constant).
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What is pollution? How many types of pollution? Define it