Answer
Verified
388.8k+ views
Hint: In the given problem, we are required to differentiate $\arctan \left( {{x^2}} \right)$ with respect to x. Since, $\arctan \left( {{x^2}} \right)$ is a composite function, so we will have to apply chain rule of differentiation in the process of differentiating $\arctan \left( {{x^2}} \right)$ . So, differentiation of $\arctan \left( {{x^2}} \right)$ with respect to x will be done layer by layer using the chain rule of differentiation.
Complete step-by-step solution:
So, Derivative of $\arctan \left( {{x^2}} \right)$ with respect to $x$ can be calculated as $\dfrac{d}{{dx}}\left( {\arctan \left( {{x^2}} \right)} \right)$ .
We know that $\arctan \left( x \right)$ is the same as $ta{n^{ - 1}}\left( x \right)$. So, we get,
$\dfrac{d}{{dx}}\left( {ta{n^{ - 1}}\left( {{x^2}} \right)} \right)$
Taking the power outside the bracket in order to apply chain rule of differentiation.
$ \Rightarrow $$\dfrac{d}{{dx}}\left( {ta{n^{ - 1}}\left( {{x^2}} \right)} \right)$
Now, Let us assume $u = {x^2}$. So substituting ${x^2}$ as $u$, we get,
$ \Rightarrow $\[\dfrac{d}{{dx}}\left[ {{{\tan }^{ - 1}}u} \right]\]
Now, we know that the derivative of $ta{n^{ - 1}}\left( x \right)$ with respect to x is $\dfrac{1}{{1 + {x^2}}}$. So, we get,
$ \Rightarrow $$\dfrac{1}{{1 + {u^2}}}\left( {\dfrac{{du}}{{dx}}} \right)$
Now, putting back $u$as ${x^2}$, we get,
$ \Rightarrow $$\dfrac{1}{{1 + {{\left( {{x^2}} \right)}^2}}}\left( {\dfrac{{d\left( {{x^2}} \right)}}{{dx}}} \right)$ because \[\dfrac{{du}}{{dx}} = \dfrac{{d({x^2})}}{{dx}}\]
Now, we know that derivative of ${x^2}$ with respect to $x$is \[2x\]. So, $\dfrac{d}{{dx}}\left( {{x^2}} \right) = 2x$.
So, Substituting the equivalent expression of $\dfrac{d}{{dx}}\left( {{x^2}} \right)$, we get,
$ \Rightarrow $$\dfrac{1}{{1 + {x^4}}} \times 2x$
Simplifying the expression, we get,
$ \Rightarrow $$\dfrac{{2x}}{{1 + {x^4}}}$
So, the derivative of $\arctan \left( {{x^2}} \right)$ with respect to $x$ is $\dfrac{{2x}}{{1 + {x^4}}}$.
Note: The given problem may also be solved using the first principle of differentiation. The derivatives of basic trigonometric functions must be learned by heart in order to find derivatives of complex composite functions using chain rule of differentiation. The chain rule of differentiation involves differentiating a composite by introducing new unknowns to ease the process and examine the behaviour of function layer by layer.
Complete step-by-step solution:
So, Derivative of $\arctan \left( {{x^2}} \right)$ with respect to $x$ can be calculated as $\dfrac{d}{{dx}}\left( {\arctan \left( {{x^2}} \right)} \right)$ .
We know that $\arctan \left( x \right)$ is the same as $ta{n^{ - 1}}\left( x \right)$. So, we get,
$\dfrac{d}{{dx}}\left( {ta{n^{ - 1}}\left( {{x^2}} \right)} \right)$
Taking the power outside the bracket in order to apply chain rule of differentiation.
$ \Rightarrow $$\dfrac{d}{{dx}}\left( {ta{n^{ - 1}}\left( {{x^2}} \right)} \right)$
Now, Let us assume $u = {x^2}$. So substituting ${x^2}$ as $u$, we get,
$ \Rightarrow $\[\dfrac{d}{{dx}}\left[ {{{\tan }^{ - 1}}u} \right]\]
Now, we know that the derivative of $ta{n^{ - 1}}\left( x \right)$ with respect to x is $\dfrac{1}{{1 + {x^2}}}$. So, we get,
$ \Rightarrow $$\dfrac{1}{{1 + {u^2}}}\left( {\dfrac{{du}}{{dx}}} \right)$
Now, putting back $u$as ${x^2}$, we get,
$ \Rightarrow $$\dfrac{1}{{1 + {{\left( {{x^2}} \right)}^2}}}\left( {\dfrac{{d\left( {{x^2}} \right)}}{{dx}}} \right)$ because \[\dfrac{{du}}{{dx}} = \dfrac{{d({x^2})}}{{dx}}\]
Now, we know that derivative of ${x^2}$ with respect to $x$is \[2x\]. So, $\dfrac{d}{{dx}}\left( {{x^2}} \right) = 2x$.
So, Substituting the equivalent expression of $\dfrac{d}{{dx}}\left( {{x^2}} \right)$, we get,
$ \Rightarrow $$\dfrac{1}{{1 + {x^4}}} \times 2x$
Simplifying the expression, we get,
$ \Rightarrow $$\dfrac{{2x}}{{1 + {x^4}}}$
So, the derivative of $\arctan \left( {{x^2}} \right)$ with respect to $x$ is $\dfrac{{2x}}{{1 + {x^4}}}$.
Note: The given problem may also be solved using the first principle of differentiation. The derivatives of basic trigonometric functions must be learned by heart in order to find derivatives of complex composite functions using chain rule of differentiation. The chain rule of differentiation involves differentiating a composite by introducing new unknowns to ease the process and examine the behaviour of function layer by layer.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
A rainbow has circular shape because A The earth is class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE