How do you differentiate $\arctan \left( {{x^2}} \right)$?
Answer
281.1k+ views
Hint: In the given problem, we are required to differentiate $\arctan \left( {{x^2}} \right)$ with respect to x. Since, $\arctan \left( {{x^2}} \right)$ is a composite function, so we will have to apply chain rule of differentiation in the process of differentiating $\arctan \left( {{x^2}} \right)$ . So, differentiation of $\arctan \left( {{x^2}} \right)$ with respect to x will be done layer by layer using the chain rule of differentiation.
Complete step-by-step solution:
So, Derivative of $\arctan \left( {{x^2}} \right)$ with respect to $x$ can be calculated as $\dfrac{d}{{dx}}\left( {\arctan \left( {{x^2}} \right)} \right)$ .
We know that $\arctan \left( x \right)$ is the same as $ta{n^{ - 1}}\left( x \right)$. So, we get,
$\dfrac{d}{{dx}}\left( {ta{n^{ - 1}}\left( {{x^2}} \right)} \right)$
Taking the power outside the bracket in order to apply chain rule of differentiation.
$ \Rightarrow $$\dfrac{d}{{dx}}\left( {ta{n^{ - 1}}\left( {{x^2}} \right)} \right)$
Now, Let us assume $u = {x^2}$. So substituting ${x^2}$ as $u$, we get,
$ \Rightarrow $\[\dfrac{d}{{dx}}\left[ {{{\tan }^{ - 1}}u} \right]\]
Now, we know that the derivative of $ta{n^{ - 1}}\left( x \right)$ with respect to x is $\dfrac{1}{{1 + {x^2}}}$. So, we get,
$ \Rightarrow $$\dfrac{1}{{1 + {u^2}}}\left( {\dfrac{{du}}{{dx}}} \right)$
Now, putting back $u$as ${x^2}$, we get,
$ \Rightarrow $$\dfrac{1}{{1 + {{\left( {{x^2}} \right)}^2}}}\left( {\dfrac{{d\left( {{x^2}} \right)}}{{dx}}} \right)$ because \[\dfrac{{du}}{{dx}} = \dfrac{{d({x^2})}}{{dx}}\]
Now, we know that derivative of ${x^2}$ with respect to $x$is \[2x\]. So, $\dfrac{d}{{dx}}\left( {{x^2}} \right) = 2x$.
So, Substituting the equivalent expression of $\dfrac{d}{{dx}}\left( {{x^2}} \right)$, we get,
$ \Rightarrow $$\dfrac{1}{{1 + {x^4}}} \times 2x$
Simplifying the expression, we get,
$ \Rightarrow $$\dfrac{{2x}}{{1 + {x^4}}}$
So, the derivative of $\arctan \left( {{x^2}} \right)$ with respect to $x$ is $\dfrac{{2x}}{{1 + {x^4}}}$.
Note: The given problem may also be solved using the first principle of differentiation. The derivatives of basic trigonometric functions must be learned by heart in order to find derivatives of complex composite functions using chain rule of differentiation. The chain rule of differentiation involves differentiating a composite by introducing new unknowns to ease the process and examine the behaviour of function layer by layer.
Complete step-by-step solution:
So, Derivative of $\arctan \left( {{x^2}} \right)$ with respect to $x$ can be calculated as $\dfrac{d}{{dx}}\left( {\arctan \left( {{x^2}} \right)} \right)$ .
We know that $\arctan \left( x \right)$ is the same as $ta{n^{ - 1}}\left( x \right)$. So, we get,
$\dfrac{d}{{dx}}\left( {ta{n^{ - 1}}\left( {{x^2}} \right)} \right)$
Taking the power outside the bracket in order to apply chain rule of differentiation.
$ \Rightarrow $$\dfrac{d}{{dx}}\left( {ta{n^{ - 1}}\left( {{x^2}} \right)} \right)$
Now, Let us assume $u = {x^2}$. So substituting ${x^2}$ as $u$, we get,
$ \Rightarrow $\[\dfrac{d}{{dx}}\left[ {{{\tan }^{ - 1}}u} \right]\]
Now, we know that the derivative of $ta{n^{ - 1}}\left( x \right)$ with respect to x is $\dfrac{1}{{1 + {x^2}}}$. So, we get,
$ \Rightarrow $$\dfrac{1}{{1 + {u^2}}}\left( {\dfrac{{du}}{{dx}}} \right)$
Now, putting back $u$as ${x^2}$, we get,
$ \Rightarrow $$\dfrac{1}{{1 + {{\left( {{x^2}} \right)}^2}}}\left( {\dfrac{{d\left( {{x^2}} \right)}}{{dx}}} \right)$ because \[\dfrac{{du}}{{dx}} = \dfrac{{d({x^2})}}{{dx}}\]
Now, we know that derivative of ${x^2}$ with respect to $x$is \[2x\]. So, $\dfrac{d}{{dx}}\left( {{x^2}} \right) = 2x$.
So, Substituting the equivalent expression of $\dfrac{d}{{dx}}\left( {{x^2}} \right)$, we get,
$ \Rightarrow $$\dfrac{1}{{1 + {x^4}}} \times 2x$
Simplifying the expression, we get,
$ \Rightarrow $$\dfrac{{2x}}{{1 + {x^4}}}$
So, the derivative of $\arctan \left( {{x^2}} \right)$ with respect to $x$ is $\dfrac{{2x}}{{1 + {x^4}}}$.
Note: The given problem may also be solved using the first principle of differentiation. The derivatives of basic trigonometric functions must be learned by heart in order to find derivatives of complex composite functions using chain rule of differentiation. The chain rule of differentiation involves differentiating a composite by introducing new unknowns to ease the process and examine the behaviour of function layer by layer.
Recently Updated Pages
Which of the following would not be a valid reason class 11 biology CBSE

What is meant by monosporic development of female class 11 biology CBSE

Draw labelled diagram of the following i Gram seed class 11 biology CBSE

Explain with the suitable examples the different types class 11 biology CBSE

How is pinnately compound leaf different from palmately class 11 biology CBSE

Match the following Column I Column I A Chlamydomonas class 11 biology CBSE

Trending doubts
The ray passing through the of the lens is not deviated class 10 physics CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

What is pollution? How many types of pollution? Define it

What is the nlx method How is it useful class 11 chemistry CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

What is the difference between anaerobic aerobic respiration class 10 biology CBSE
