
Diborane is a potential rocket fuel which undergoes combustion according to the reaction $ {B_2}{H_6}(g) + 3{O_2}(g) \to {B_2}{O_3}(s) + 3{H_2}O(g) $
From the following data, calculate the enthalpy change for the combustion of diborane.
$ 2B(s) + \dfrac{3}{2}{O_2}(g) \to {B_2}{O_3}(s),{\text{ }}\Delta H = - 1273{\text{ }}kJ{\text{ }}mo{l^{ - 1}} $
$ {H_2}(g) + \dfrac{1}{2}{O_2}(g) \to {H_2}O(l),{\text{ }}\Delta H{\text{ = - 286 kJ }}mo{l^{ - 1}} $
$ {H_2}O(l) \to {H_2}O(g),{\text{ }}\Delta H = 44{\text{ }}kJmo{l^{ - 1}} $
$ 2B(s) + 3{H_2}(g) \to {B_2}{H_6}(g),{\text{ }}\Delta H = 36{\text{ }}kJ{\text{ }}mo{l^{ - 1}} $
Answer
510.6k+ views
Hint :Enthalpy change is the heat passing into or out of the system during a reaction. The heat content of a system is the enthalpy. The enthalpy change of a chemical reaction is roughly equal to the amount of energy lost or gained during the chemical reaction.
$ \Delta H = + (\Sigma (\Delta {H_f}{\text{ of products) - }}\Sigma {\text{(}}\Delta {{\text{H}}_f}{\text{ of reactants))}} $
Complete Step By Step Answer:
Diborane is a potential fuel and it undergoes combustion reaction as below:
$ {B_2}{H_6}(g) + 3{O_2}(g) \to {B_2}{O_3}(s) + 3{H_2}O(g) $
To calculate the enthalpy change for the combustion reaction of diborane, use the following formula:
$ \Delta H = + (\Sigma (\Delta {H_f}{\text{ of products) - }}\Sigma {\text{(}}\Delta {{\text{H}}_f}{\text{ of reactants))}} $
$ = + [(\Delta {H_f}{\text{ of }}{{\text{B}}_2}{{\text{O}}_3}(g) + 3 \times \Delta {H_f}{\text{ of }}{{\text{H}}_2}{\text{O(g)) - (}}\Delta {{\text{H}}_f}{\text{ of }}{{\text{B}}_2}{{\text{H}}_6}(g) + 3 \times \Delta {H_{f{\text{ }}}}{\text{of }}{{\text{O}}_2}(g))] $
$ {H_2}(g) + \dfrac{1}{2}{O_2}(g) \to {H_2}O(l),{\text{ }}\Delta H{\text{ = - 286 kJ }}mo{l^{ - 1}} $
$ {H_2}O(l) \to {H_2}O(g),{\text{ }}\Delta H = 44{\text{ }}kJmo{l^{ - 1}} $
$ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ $
$ {H_2}(g) + \left( {\dfrac{1}{2}} \right){O_2}(g) \to {H_2}O(g) $
$ \Delta {H_f} = - 242kJmo{l^{ - 1}} $
After substituting the given data,
$ \Delta H = [( - 1273) + (3 \times - 242)] - (36 - 3 \times 0) + [ - 1999 - 36] $
$ = - 2035kJmo{l^{ - 1}} $
Note :
The enthalpy change which occurs when one mole of a compound is burnt completely in oxygen under standard conditions and with everything in standard state is called the standard enthalpy change of combustion of the compound. Heat is released in combustion reactions. So, the total heat content should decrease in combustion reactions.
$ \Delta H = + (\Sigma (\Delta {H_f}{\text{ of products) - }}\Sigma {\text{(}}\Delta {{\text{H}}_f}{\text{ of reactants))}} $
Complete Step By Step Answer:
Diborane is a potential fuel and it undergoes combustion reaction as below:
$ {B_2}{H_6}(g) + 3{O_2}(g) \to {B_2}{O_3}(s) + 3{H_2}O(g) $
To calculate the enthalpy change for the combustion reaction of diborane, use the following formula:
$ \Delta H = + (\Sigma (\Delta {H_f}{\text{ of products) - }}\Sigma {\text{(}}\Delta {{\text{H}}_f}{\text{ of reactants))}} $
$ = + [(\Delta {H_f}{\text{ of }}{{\text{B}}_2}{{\text{O}}_3}(g) + 3 \times \Delta {H_f}{\text{ of }}{{\text{H}}_2}{\text{O(g)) - (}}\Delta {{\text{H}}_f}{\text{ of }}{{\text{B}}_2}{{\text{H}}_6}(g) + 3 \times \Delta {H_{f{\text{ }}}}{\text{of }}{{\text{O}}_2}(g))] $
$ {H_2}(g) + \dfrac{1}{2}{O_2}(g) \to {H_2}O(l),{\text{ }}\Delta H{\text{ = - 286 kJ }}mo{l^{ - 1}} $
$ {H_2}O(l) \to {H_2}O(g),{\text{ }}\Delta H = 44{\text{ }}kJmo{l^{ - 1}} $
$ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ $
$ {H_2}(g) + \left( {\dfrac{1}{2}} \right){O_2}(g) \to {H_2}O(g) $
$ \Delta {H_f} = - 242kJmo{l^{ - 1}} $
After substituting the given data,
$ \Delta H = [( - 1273) + (3 \times - 242)] - (36 - 3 \times 0) + [ - 1999 - 36] $
$ = - 2035kJmo{l^{ - 1}} $
Note :
The enthalpy change which occurs when one mole of a compound is burnt completely in oxygen under standard conditions and with everything in standard state is called the standard enthalpy change of combustion of the compound. Heat is released in combustion reactions. So, the total heat content should decrease in combustion reactions.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

