Determine whether the following series is convergent or divergent $1+\dfrac{x}{2}+\dfrac{{{x}^{2}}}{5}+\dfrac{{{x}^{3}}}{10}........\dfrac{{{x}^{n}}}{{{n}^{2}}+1}+.......$
Answer
279.6k+ views
Hint: To solve this question we need to know the concept of ratio test which will be used to find the…… of the series. For finding whether the series is convergent or divergent, we will firstly find the value of ${{a}_{n+1}}$ and ${{a}_{n}}$. Then check that whether the value of $\displaystyle \lim_{n \to \infty }\left| \dfrac{{{a}_{n+1}}}{{{a}_{n}}} \right|$ is less than, greater than or equal to $1$.
Complete step by step answer:
The question ask us to find whether the series given to us which is $1+\dfrac{x}{2}+\dfrac{{{x}^{2}}}{5}+\dfrac{{{x}^{3}}}{10}........\dfrac{{{x}^{n}}}{{{n}^{2}}+1}+.......$ it is convergent or divergent. The first step to solve this question will be to write the value of ${{a}_{n+1}}$ and ${{a}_{n}}$. On writing the expression in mathematical form we get:
$\Rightarrow {{a}_{n}}=\dfrac{{{x}^{n}}}{{{n}^{2}}+1}$
Now on writing the value of ${{a}_{n+1}}$ , where we will substitute the variable “n” with that of the variable”n+1”. So on doing this we get:
$\Rightarrow {{a}_{n+1}}=\dfrac{{{x}^{n+1}}}{{{\left( n+1 \right)}^{2}}+1}$
The next step will be to find $L=\displaystyle \lim_{n \to \infty }\left| \dfrac{{{a}_{n+1}}}{{{a}_{n}}} \right|$ , so on substituting the value on the given expression we get:
$\Rightarrow L=\displaystyle \lim_{n \to \infty }\left| \dfrac{\dfrac{{{x}^{n+1}}}{{{(n+1)}^{2}}+1}}{\dfrac{{{x}^{n}}}{{{n}^{2}}+1}} \right|$
For solving the above expression we will cancel out the terms and get:
\[\Rightarrow L=\displaystyle \lim_{n \to \infty }\left| \dfrac{{{x}^{n+1}}\left( {{n}^{2}}+1 \right)}{\left( {{(n+1)}^{2}}+1 \right){{x}^{n}}} \right|\]
\[\Rightarrow L=\displaystyle \lim_{n \to \infty }\left| \dfrac{{{x}^{n}}\times x\left( {{n}^{2}}+1 \right)}{\left( {{(n+1)}^{2}}+1 \right){{x}^{n}}} \right|\]
\[\Rightarrow L=\displaystyle \lim_{n \to \infty }\left| \dfrac{x\left( {{n}^{2}}+1 \right)}{\left( {{(n+1)}^{2}}+1 \right)} \right|\]
To solve it further we will divide the numerator and the denominator with ${{n}^{2}}$ on doing this we get:
\[\Rightarrow L=\displaystyle \lim_{n \to \infty }\left| \dfrac{x\left( \dfrac{{{n}^{2}}}{{{n}^{2}}}+\dfrac{1}{{{n}^{2}}} \right)}{\left( \dfrac{{{(n+1)}^{2}}+1}{{{n}^{2}}} \right)} \right|\]
\[\Rightarrow \displaystyle \lim_{n \to \infty }\left| \dfrac{x\left( \dfrac{{{n}^{2}}}{{{n}^{2}}}+\dfrac{1}{{{n}^{2}}} \right)}{\left( {{\left( \dfrac{n+1}{n} \right)}^{2}}+\dfrac{1}{{{n}^{2}}} \right)} \right|\]
Now on putting the limit in the above expression we get:
\[\Rightarrow L=\left| \dfrac{x\left( 1+\dfrac{1}{\infty } \right)}{\left( 1+\dfrac{1}{\infty } \right)} \right|\]
\[\Rightarrow L=\left| x \right|\]
For convergence the value of \[L<1\]which means the value of $\left| x \right|<1$ to find the value of $x$for which the series becomes convergent or divergent.
According to the ratio test the series will be convergent for $x\le 1$ and will be divergent for $x>1$.
$\therefore $ The series $1+\dfrac{x}{2}+\dfrac{{{x}^{2}}}{5}+\dfrac{{{x}^{3}}}{10}........\dfrac{{{x}^{n}}}{{{n}^{2}}+1}+.......$ will be convergent for $x\le 1$ and will be divergent for $x>1$.
Note: To find knowing the convergence and divergence of the series we need solve it using know the concept of ration test which states:
Let the value of $L=\displaystyle \lim_{n \to \infty }\left| \dfrac{{{a}_{n+1}}}{{{a}_{n}}} \right|$ be the condition then:
If $L<1$ , the series is convergent.
If $L>1$ , the series is divergent.
If $L=1$ , then the ratio test does not give any conclusion.
Complete step by step answer:
The question ask us to find whether the series given to us which is $1+\dfrac{x}{2}+\dfrac{{{x}^{2}}}{5}+\dfrac{{{x}^{3}}}{10}........\dfrac{{{x}^{n}}}{{{n}^{2}}+1}+.......$ it is convergent or divergent. The first step to solve this question will be to write the value of ${{a}_{n+1}}$ and ${{a}_{n}}$. On writing the expression in mathematical form we get:
$\Rightarrow {{a}_{n}}=\dfrac{{{x}^{n}}}{{{n}^{2}}+1}$
Now on writing the value of ${{a}_{n+1}}$ , where we will substitute the variable “n” with that of the variable”n+1”. So on doing this we get:
$\Rightarrow {{a}_{n+1}}=\dfrac{{{x}^{n+1}}}{{{\left( n+1 \right)}^{2}}+1}$
The next step will be to find $L=\displaystyle \lim_{n \to \infty }\left| \dfrac{{{a}_{n+1}}}{{{a}_{n}}} \right|$ , so on substituting the value on the given expression we get:
$\Rightarrow L=\displaystyle \lim_{n \to \infty }\left| \dfrac{\dfrac{{{x}^{n+1}}}{{{(n+1)}^{2}}+1}}{\dfrac{{{x}^{n}}}{{{n}^{2}}+1}} \right|$
For solving the above expression we will cancel out the terms and get:
\[\Rightarrow L=\displaystyle \lim_{n \to \infty }\left| \dfrac{{{x}^{n+1}}\left( {{n}^{2}}+1 \right)}{\left( {{(n+1)}^{2}}+1 \right){{x}^{n}}} \right|\]
\[\Rightarrow L=\displaystyle \lim_{n \to \infty }\left| \dfrac{{{x}^{n}}\times x\left( {{n}^{2}}+1 \right)}{\left( {{(n+1)}^{2}}+1 \right){{x}^{n}}} \right|\]
\[\Rightarrow L=\displaystyle \lim_{n \to \infty }\left| \dfrac{x\left( {{n}^{2}}+1 \right)}{\left( {{(n+1)}^{2}}+1 \right)} \right|\]
To solve it further we will divide the numerator and the denominator with ${{n}^{2}}$ on doing this we get:
\[\Rightarrow L=\displaystyle \lim_{n \to \infty }\left| \dfrac{x\left( \dfrac{{{n}^{2}}}{{{n}^{2}}}+\dfrac{1}{{{n}^{2}}} \right)}{\left( \dfrac{{{(n+1)}^{2}}+1}{{{n}^{2}}} \right)} \right|\]
\[\Rightarrow \displaystyle \lim_{n \to \infty }\left| \dfrac{x\left( \dfrac{{{n}^{2}}}{{{n}^{2}}}+\dfrac{1}{{{n}^{2}}} \right)}{\left( {{\left( \dfrac{n+1}{n} \right)}^{2}}+\dfrac{1}{{{n}^{2}}} \right)} \right|\]
Now on putting the limit in the above expression we get:
\[\Rightarrow L=\left| \dfrac{x\left( 1+\dfrac{1}{\infty } \right)}{\left( 1+\dfrac{1}{\infty } \right)} \right|\]
\[\Rightarrow L=\left| x \right|\]
For convergence the value of \[L<1\]which means the value of $\left| x \right|<1$ to find the value of $x$for which the series becomes convergent or divergent.
According to the ratio test the series will be convergent for $x\le 1$ and will be divergent for $x>1$.
$\therefore $ The series $1+\dfrac{x}{2}+\dfrac{{{x}^{2}}}{5}+\dfrac{{{x}^{3}}}{10}........\dfrac{{{x}^{n}}}{{{n}^{2}}+1}+.......$ will be convergent for $x\le 1$ and will be divergent for $x>1$.
Note: To find knowing the convergence and divergence of the series we need solve it using know the concept of ration test which states:
Let the value of $L=\displaystyle \lim_{n \to \infty }\left| \dfrac{{{a}_{n+1}}}{{{a}_{n}}} \right|$ be the condition then:
If $L<1$ , the series is convergent.
If $L>1$ , the series is divergent.
If $L=1$ , then the ratio test does not give any conclusion.
Recently Updated Pages
Which of the following would not be a valid reason class 11 biology CBSE

What is meant by monosporic development of female class 11 biology CBSE

Draw labelled diagram of the following i Gram seed class 11 biology CBSE

Explain with the suitable examples the different types class 11 biology CBSE

How is pinnately compound leaf different from palmately class 11 biology CBSE

Match the following Column I Column I A Chlamydomonas class 11 biology CBSE

Trending doubts
Which country launched the first satellite in space class 11 physics CBSE

Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is the past tense of read class 10 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

What is pollution? How many types of pollution? Define it

Give 10 examples for herbs , shrubs , climbers , creepers

Write a letter to the principal requesting him to grant class 10 english CBSE
