
How do you derive the variance of a gaussian distribution?
Answer
550.8k+ views
Hint: The probability density function of a gaussian distribution is $\dfrac{1}{\sigma \sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{\left( \dfrac{x-\alpha }{\sigma } \right)}^{2}}}}$ where $\alpha $ is the means of distribution and $\sigma $ is the variance of standard deviation of distribution. So ${{\sigma }^{2}}$ is the variance of distribution. If f(x) is the probability density function of any distribution, the mean of the distribution is equal to $\int\limits_{-\infty }^{\infty }{xf\left( x \right)dx}$ and $\int\limits_{-\infty }^{\infty }{{{x}^{2}}f\left( x \right)dx}-{{\left( \int\limits_{-\infty }^{\infty }{xf\left( x \right)dx} \right)}^{2}}$ so variance is equal to $\int\limits_{-\infty }^{\infty }{{{x}^{2}}f\left( x \right)dx}-{{\alpha }^{2}}$
Complete step by step solution:
We have to derive variance of normal distribution $\dfrac{1}{\sigma \sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{\left( \dfrac{x-\alpha }{\sigma } \right)}^{2}}}}$
Variance of the distribution = $\int\limits_{-\infty }^{\infty }{{{x}^{2}}\dfrac{1}{\sigma \sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{\left( \dfrac{x-\alpha }{\sigma } \right)}^{2}}}}}dx-{{\alpha }^{2}}$
If we put $\dfrac{x-\alpha }{\sigma }=t$ we get x equal to $\alpha +t\sigma $ and the limit of t is $-\infty $ to $\infty $ and $dx=\sigma dt$
$\Rightarrow \int\limits_{-\infty }^{\infty }{{{x}^{2}}\dfrac{1}{\sigma \sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{\left( \dfrac{x-\alpha }{\sigma } \right)}^{2}}}}}dx-{{\alpha }^{2}}=\int\limits_{-\infty }^{\infty }{{{\left( \alpha +t\sigma \right)}^{2}}}\dfrac{1}{\sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{t}^{2}}}}dt-{{\alpha }^{2}}$
$\Rightarrow \int\limits_{-\infty }^{\infty }{{{x}^{2}}\dfrac{1}{\sigma \sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{\left( \dfrac{x-\alpha }{\sigma } \right)}^{2}}}}}dx-{{\alpha }^{2}}=\int\limits_{-\infty }^{\infty }{\left( {{\alpha }^{2}}+{{t}^{2}}{{\sigma }^{2}}+2t\alpha \sigma \right)}\dfrac{1}{\sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{t}^{2}}}}dt-{{\alpha }^{2}}$
$\Rightarrow \int\limits_{-\infty }^{\infty }{{{x}^{2}}\dfrac{1}{\sigma \sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{\left( \dfrac{x-\alpha }{\sigma } \right)}^{2}}}}}dx-{{\alpha }^{2}}=\int\limits_{-\infty }^{\infty }{{{\alpha }^{2}}}\dfrac{1}{\sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{t}^{2}}}}dt+\int\limits_{-\infty }^{\infty }{\dfrac{2t\alpha \sigma }{\sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{t}^{2}}}}}dt+\int\limits_{-\infty }^{\infty }{\dfrac{{{t}^{2}}{{\sigma }^{2}}}{\sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{t}^{2}}}}}dt-{{\alpha }^{2}}$
$\dfrac{2t\alpha \sigma }{\sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{t}^{2}}}}$is an odd function, so $\int\limits_{-\infty }^{\infty }{\dfrac{2t\alpha \sigma }{\sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{t}^{2}}}}}dt$ is equal to 0.
We know that $\int\limits_{-\infty }^{\infty }{{{e}^{-\dfrac{1}{2}{{t}^{2}}}}}$ is equal to $2\int\limits_{0}^{\infty }{{{e}^{-\dfrac{1}{2}{{t}^{2}}}}}$ because it is an even function$\Rightarrow \int\limits_{-\infty }^{\infty }{{{x}^{2}}\dfrac{1}{\sigma \sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{\left( \dfrac{x-\alpha }{\sigma } \right)}^{2}}}}}dx-{{\alpha }^{2}}=2\int\limits_{0}^{\infty }{{{\alpha }^{2}}}\dfrac{1}{\sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{t}^{2}}}}dt+2\int\limits_{0}^{\infty }{\dfrac{{{t}^{2}}{{\sigma }^{2}}}{\sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{t}^{2}}}}}dt-{{\alpha }^{2}}$
$\int\limits_{0}^{\infty }{{{e}^{-\dfrac{1}{2}{{t}^{2}}}}}$ is equal to $\dfrac{1}{\sqrt{2}}\Gamma \dfrac{1}{2}$ = $\sqrt{\dfrac{\pi }{2}}$
We can calculate $\int\limits_{0}^{\infty }{{{t}^{2}}{{e}^{-\dfrac{1}{2}{{t}^{2}}}}}$ is equal to $\sqrt{2}\Gamma \dfrac{3}{2}$ = $\sqrt{\dfrac{\pi }{2}}$
Replacing these values, we get
$\Rightarrow \int\limits_{-\infty }^{\infty }{{{x}^{2}}\dfrac{1}{\sigma \sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{\left( \dfrac{x-\alpha }{\sigma } \right)}^{2}}}}}dx-{{\alpha }^{2}}=\dfrac{2{{\alpha }^{2}}\sqrt{\pi }}{\sqrt{2\pi }\sqrt{2}}+\dfrac{2{{\sigma }^{2}}\sqrt{\pi }}{\sqrt{2\pi }\sqrt{2}}-{{\alpha }^{2}}$
$\Rightarrow \int\limits_{-\infty }^{\infty }{{{x}^{2}}\dfrac{1}{\sigma \sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{\left( \dfrac{x-\alpha }{\sigma } \right)}^{2}}}}}dx-{{\alpha }^{2}}={{\alpha }^{2}}+{{\sigma }^{2}}-{{\alpha }^{2}}$
$\Rightarrow \int\limits_{-\infty }^{\infty }{{{x}^{2}}\dfrac{1}{\sigma \sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{\left( \dfrac{x-\alpha }{\sigma } \right)}^{2}}}}}dx-{{\alpha }^{2}}={{\sigma }^{2}}$
So the variance is equal to ${{\sigma }^{2}}$
Note: The definition of gamma function is $\Gamma \left( x \right)=\int\limits_{0}^{\infty }{{{t}^{x-1}}{{e}^{-t}}dt}$ gamma of any positive integer is equal to factorial of the preceding number of that number. We can define gamma as $\Gamma \left( x \right)=\left( x-1 \right)\Gamma \left( x-1 \right)$ . Definition of even function is f( x ) = f( -x). The graph of an even function is always symmetric with respect to y axis and the odd function is f( x) = -f (x ). The probability density function of gaussian or normal distribution which $\dfrac{1}{\sigma \sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{\left( \dfrac{x-\alpha }{\sigma } \right)}^{2}}}}$ , the curve of this function is symmetric with respect to straight line x = $\alpha $.
Complete step by step solution:
We have to derive variance of normal distribution $\dfrac{1}{\sigma \sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{\left( \dfrac{x-\alpha }{\sigma } \right)}^{2}}}}$
Variance of the distribution = $\int\limits_{-\infty }^{\infty }{{{x}^{2}}\dfrac{1}{\sigma \sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{\left( \dfrac{x-\alpha }{\sigma } \right)}^{2}}}}}dx-{{\alpha }^{2}}$
If we put $\dfrac{x-\alpha }{\sigma }=t$ we get x equal to $\alpha +t\sigma $ and the limit of t is $-\infty $ to $\infty $ and $dx=\sigma dt$
$\Rightarrow \int\limits_{-\infty }^{\infty }{{{x}^{2}}\dfrac{1}{\sigma \sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{\left( \dfrac{x-\alpha }{\sigma } \right)}^{2}}}}}dx-{{\alpha }^{2}}=\int\limits_{-\infty }^{\infty }{{{\left( \alpha +t\sigma \right)}^{2}}}\dfrac{1}{\sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{t}^{2}}}}dt-{{\alpha }^{2}}$
$\Rightarrow \int\limits_{-\infty }^{\infty }{{{x}^{2}}\dfrac{1}{\sigma \sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{\left( \dfrac{x-\alpha }{\sigma } \right)}^{2}}}}}dx-{{\alpha }^{2}}=\int\limits_{-\infty }^{\infty }{\left( {{\alpha }^{2}}+{{t}^{2}}{{\sigma }^{2}}+2t\alpha \sigma \right)}\dfrac{1}{\sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{t}^{2}}}}dt-{{\alpha }^{2}}$
$\Rightarrow \int\limits_{-\infty }^{\infty }{{{x}^{2}}\dfrac{1}{\sigma \sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{\left( \dfrac{x-\alpha }{\sigma } \right)}^{2}}}}}dx-{{\alpha }^{2}}=\int\limits_{-\infty }^{\infty }{{{\alpha }^{2}}}\dfrac{1}{\sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{t}^{2}}}}dt+\int\limits_{-\infty }^{\infty }{\dfrac{2t\alpha \sigma }{\sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{t}^{2}}}}}dt+\int\limits_{-\infty }^{\infty }{\dfrac{{{t}^{2}}{{\sigma }^{2}}}{\sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{t}^{2}}}}}dt-{{\alpha }^{2}}$
$\dfrac{2t\alpha \sigma }{\sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{t}^{2}}}}$is an odd function, so $\int\limits_{-\infty }^{\infty }{\dfrac{2t\alpha \sigma }{\sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{t}^{2}}}}}dt$ is equal to 0.
We know that $\int\limits_{-\infty }^{\infty }{{{e}^{-\dfrac{1}{2}{{t}^{2}}}}}$ is equal to $2\int\limits_{0}^{\infty }{{{e}^{-\dfrac{1}{2}{{t}^{2}}}}}$ because it is an even function$\Rightarrow \int\limits_{-\infty }^{\infty }{{{x}^{2}}\dfrac{1}{\sigma \sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{\left( \dfrac{x-\alpha }{\sigma } \right)}^{2}}}}}dx-{{\alpha }^{2}}=2\int\limits_{0}^{\infty }{{{\alpha }^{2}}}\dfrac{1}{\sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{t}^{2}}}}dt+2\int\limits_{0}^{\infty }{\dfrac{{{t}^{2}}{{\sigma }^{2}}}{\sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{t}^{2}}}}}dt-{{\alpha }^{2}}$
$\int\limits_{0}^{\infty }{{{e}^{-\dfrac{1}{2}{{t}^{2}}}}}$ is equal to $\dfrac{1}{\sqrt{2}}\Gamma \dfrac{1}{2}$ = $\sqrt{\dfrac{\pi }{2}}$
We can calculate $\int\limits_{0}^{\infty }{{{t}^{2}}{{e}^{-\dfrac{1}{2}{{t}^{2}}}}}$ is equal to $\sqrt{2}\Gamma \dfrac{3}{2}$ = $\sqrt{\dfrac{\pi }{2}}$
Replacing these values, we get
$\Rightarrow \int\limits_{-\infty }^{\infty }{{{x}^{2}}\dfrac{1}{\sigma \sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{\left( \dfrac{x-\alpha }{\sigma } \right)}^{2}}}}}dx-{{\alpha }^{2}}=\dfrac{2{{\alpha }^{2}}\sqrt{\pi }}{\sqrt{2\pi }\sqrt{2}}+\dfrac{2{{\sigma }^{2}}\sqrt{\pi }}{\sqrt{2\pi }\sqrt{2}}-{{\alpha }^{2}}$
$\Rightarrow \int\limits_{-\infty }^{\infty }{{{x}^{2}}\dfrac{1}{\sigma \sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{\left( \dfrac{x-\alpha }{\sigma } \right)}^{2}}}}}dx-{{\alpha }^{2}}={{\alpha }^{2}}+{{\sigma }^{2}}-{{\alpha }^{2}}$
$\Rightarrow \int\limits_{-\infty }^{\infty }{{{x}^{2}}\dfrac{1}{\sigma \sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{\left( \dfrac{x-\alpha }{\sigma } \right)}^{2}}}}}dx-{{\alpha }^{2}}={{\sigma }^{2}}$
So the variance is equal to ${{\sigma }^{2}}$
Note: The definition of gamma function is $\Gamma \left( x \right)=\int\limits_{0}^{\infty }{{{t}^{x-1}}{{e}^{-t}}dt}$ gamma of any positive integer is equal to factorial of the preceding number of that number. We can define gamma as $\Gamma \left( x \right)=\left( x-1 \right)\Gamma \left( x-1 \right)$ . Definition of even function is f( x ) = f( -x). The graph of an even function is always symmetric with respect to y axis and the odd function is f( x) = -f (x ). The probability density function of gaussian or normal distribution which $\dfrac{1}{\sigma \sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{\left( \dfrac{x-\alpha }{\sigma } \right)}^{2}}}}$ , the curve of this function is symmetric with respect to straight line x = $\alpha $.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

