
How do you derive the variance of a gaussian distribution?
Answer
453.9k+ views
Hint: The probability density function of a gaussian distribution is $\dfrac{1}{\sigma \sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{\left( \dfrac{x-\alpha }{\sigma } \right)}^{2}}}}$ where $\alpha $ is the means of distribution and $\sigma $ is the variance of standard deviation of distribution. So ${{\sigma }^{2}}$ is the variance of distribution. If f(x) is the probability density function of any distribution, the mean of the distribution is equal to $\int\limits_{-\infty }^{\infty }{xf\left( x \right)dx}$ and $\int\limits_{-\infty }^{\infty }{{{x}^{2}}f\left( x \right)dx}-{{\left( \int\limits_{-\infty }^{\infty }{xf\left( x \right)dx} \right)}^{2}}$ so variance is equal to $\int\limits_{-\infty }^{\infty }{{{x}^{2}}f\left( x \right)dx}-{{\alpha }^{2}}$
Complete step by step solution:
We have to derive variance of normal distribution $\dfrac{1}{\sigma \sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{\left( \dfrac{x-\alpha }{\sigma } \right)}^{2}}}}$
Variance of the distribution = $\int\limits_{-\infty }^{\infty }{{{x}^{2}}\dfrac{1}{\sigma \sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{\left( \dfrac{x-\alpha }{\sigma } \right)}^{2}}}}}dx-{{\alpha }^{2}}$
If we put $\dfrac{x-\alpha }{\sigma }=t$ we get x equal to $\alpha +t\sigma $ and the limit of t is $-\infty $ to $\infty $ and $dx=\sigma dt$
$\Rightarrow \int\limits_{-\infty }^{\infty }{{{x}^{2}}\dfrac{1}{\sigma \sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{\left( \dfrac{x-\alpha }{\sigma } \right)}^{2}}}}}dx-{{\alpha }^{2}}=\int\limits_{-\infty }^{\infty }{{{\left( \alpha +t\sigma \right)}^{2}}}\dfrac{1}{\sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{t}^{2}}}}dt-{{\alpha }^{2}}$
$\Rightarrow \int\limits_{-\infty }^{\infty }{{{x}^{2}}\dfrac{1}{\sigma \sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{\left( \dfrac{x-\alpha }{\sigma } \right)}^{2}}}}}dx-{{\alpha }^{2}}=\int\limits_{-\infty }^{\infty }{\left( {{\alpha }^{2}}+{{t}^{2}}{{\sigma }^{2}}+2t\alpha \sigma \right)}\dfrac{1}{\sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{t}^{2}}}}dt-{{\alpha }^{2}}$
$\Rightarrow \int\limits_{-\infty }^{\infty }{{{x}^{2}}\dfrac{1}{\sigma \sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{\left( \dfrac{x-\alpha }{\sigma } \right)}^{2}}}}}dx-{{\alpha }^{2}}=\int\limits_{-\infty }^{\infty }{{{\alpha }^{2}}}\dfrac{1}{\sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{t}^{2}}}}dt+\int\limits_{-\infty }^{\infty }{\dfrac{2t\alpha \sigma }{\sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{t}^{2}}}}}dt+\int\limits_{-\infty }^{\infty }{\dfrac{{{t}^{2}}{{\sigma }^{2}}}{\sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{t}^{2}}}}}dt-{{\alpha }^{2}}$
$\dfrac{2t\alpha \sigma }{\sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{t}^{2}}}}$is an odd function, so $\int\limits_{-\infty }^{\infty }{\dfrac{2t\alpha \sigma }{\sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{t}^{2}}}}}dt$ is equal to 0.
We know that $\int\limits_{-\infty }^{\infty }{{{e}^{-\dfrac{1}{2}{{t}^{2}}}}}$ is equal to $2\int\limits_{0}^{\infty }{{{e}^{-\dfrac{1}{2}{{t}^{2}}}}}$ because it is an even function$\Rightarrow \int\limits_{-\infty }^{\infty }{{{x}^{2}}\dfrac{1}{\sigma \sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{\left( \dfrac{x-\alpha }{\sigma } \right)}^{2}}}}}dx-{{\alpha }^{2}}=2\int\limits_{0}^{\infty }{{{\alpha }^{2}}}\dfrac{1}{\sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{t}^{2}}}}dt+2\int\limits_{0}^{\infty }{\dfrac{{{t}^{2}}{{\sigma }^{2}}}{\sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{t}^{2}}}}}dt-{{\alpha }^{2}}$
$\int\limits_{0}^{\infty }{{{e}^{-\dfrac{1}{2}{{t}^{2}}}}}$ is equal to $\dfrac{1}{\sqrt{2}}\Gamma \dfrac{1}{2}$ = $\sqrt{\dfrac{\pi }{2}}$
We can calculate $\int\limits_{0}^{\infty }{{{t}^{2}}{{e}^{-\dfrac{1}{2}{{t}^{2}}}}}$ is equal to $\sqrt{2}\Gamma \dfrac{3}{2}$ = $\sqrt{\dfrac{\pi }{2}}$
Replacing these values, we get
$\Rightarrow \int\limits_{-\infty }^{\infty }{{{x}^{2}}\dfrac{1}{\sigma \sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{\left( \dfrac{x-\alpha }{\sigma } \right)}^{2}}}}}dx-{{\alpha }^{2}}=\dfrac{2{{\alpha }^{2}}\sqrt{\pi }}{\sqrt{2\pi }\sqrt{2}}+\dfrac{2{{\sigma }^{2}}\sqrt{\pi }}{\sqrt{2\pi }\sqrt{2}}-{{\alpha }^{2}}$
$\Rightarrow \int\limits_{-\infty }^{\infty }{{{x}^{2}}\dfrac{1}{\sigma \sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{\left( \dfrac{x-\alpha }{\sigma } \right)}^{2}}}}}dx-{{\alpha }^{2}}={{\alpha }^{2}}+{{\sigma }^{2}}-{{\alpha }^{2}}$
$\Rightarrow \int\limits_{-\infty }^{\infty }{{{x}^{2}}\dfrac{1}{\sigma \sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{\left( \dfrac{x-\alpha }{\sigma } \right)}^{2}}}}}dx-{{\alpha }^{2}}={{\sigma }^{2}}$
So the variance is equal to ${{\sigma }^{2}}$
Note: The definition of gamma function is $\Gamma \left( x \right)=\int\limits_{0}^{\infty }{{{t}^{x-1}}{{e}^{-t}}dt}$ gamma of any positive integer is equal to factorial of the preceding number of that number. We can define gamma as $\Gamma \left( x \right)=\left( x-1 \right)\Gamma \left( x-1 \right)$ . Definition of even function is f( x ) = f( -x). The graph of an even function is always symmetric with respect to y axis and the odd function is f( x) = -f (x ). The probability density function of gaussian or normal distribution which $\dfrac{1}{\sigma \sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{\left( \dfrac{x-\alpha }{\sigma } \right)}^{2}}}}$ , the curve of this function is symmetric with respect to straight line x = $\alpha $.
Complete step by step solution:
We have to derive variance of normal distribution $\dfrac{1}{\sigma \sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{\left( \dfrac{x-\alpha }{\sigma } \right)}^{2}}}}$
Variance of the distribution = $\int\limits_{-\infty }^{\infty }{{{x}^{2}}\dfrac{1}{\sigma \sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{\left( \dfrac{x-\alpha }{\sigma } \right)}^{2}}}}}dx-{{\alpha }^{2}}$
If we put $\dfrac{x-\alpha }{\sigma }=t$ we get x equal to $\alpha +t\sigma $ and the limit of t is $-\infty $ to $\infty $ and $dx=\sigma dt$
$\Rightarrow \int\limits_{-\infty }^{\infty }{{{x}^{2}}\dfrac{1}{\sigma \sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{\left( \dfrac{x-\alpha }{\sigma } \right)}^{2}}}}}dx-{{\alpha }^{2}}=\int\limits_{-\infty }^{\infty }{{{\left( \alpha +t\sigma \right)}^{2}}}\dfrac{1}{\sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{t}^{2}}}}dt-{{\alpha }^{2}}$
$\Rightarrow \int\limits_{-\infty }^{\infty }{{{x}^{2}}\dfrac{1}{\sigma \sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{\left( \dfrac{x-\alpha }{\sigma } \right)}^{2}}}}}dx-{{\alpha }^{2}}=\int\limits_{-\infty }^{\infty }{\left( {{\alpha }^{2}}+{{t}^{2}}{{\sigma }^{2}}+2t\alpha \sigma \right)}\dfrac{1}{\sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{t}^{2}}}}dt-{{\alpha }^{2}}$
$\Rightarrow \int\limits_{-\infty }^{\infty }{{{x}^{2}}\dfrac{1}{\sigma \sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{\left( \dfrac{x-\alpha }{\sigma } \right)}^{2}}}}}dx-{{\alpha }^{2}}=\int\limits_{-\infty }^{\infty }{{{\alpha }^{2}}}\dfrac{1}{\sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{t}^{2}}}}dt+\int\limits_{-\infty }^{\infty }{\dfrac{2t\alpha \sigma }{\sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{t}^{2}}}}}dt+\int\limits_{-\infty }^{\infty }{\dfrac{{{t}^{2}}{{\sigma }^{2}}}{\sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{t}^{2}}}}}dt-{{\alpha }^{2}}$
$\dfrac{2t\alpha \sigma }{\sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{t}^{2}}}}$is an odd function, so $\int\limits_{-\infty }^{\infty }{\dfrac{2t\alpha \sigma }{\sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{t}^{2}}}}}dt$ is equal to 0.
We know that $\int\limits_{-\infty }^{\infty }{{{e}^{-\dfrac{1}{2}{{t}^{2}}}}}$ is equal to $2\int\limits_{0}^{\infty }{{{e}^{-\dfrac{1}{2}{{t}^{2}}}}}$ because it is an even function$\Rightarrow \int\limits_{-\infty }^{\infty }{{{x}^{2}}\dfrac{1}{\sigma \sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{\left( \dfrac{x-\alpha }{\sigma } \right)}^{2}}}}}dx-{{\alpha }^{2}}=2\int\limits_{0}^{\infty }{{{\alpha }^{2}}}\dfrac{1}{\sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{t}^{2}}}}dt+2\int\limits_{0}^{\infty }{\dfrac{{{t}^{2}}{{\sigma }^{2}}}{\sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{t}^{2}}}}}dt-{{\alpha }^{2}}$
$\int\limits_{0}^{\infty }{{{e}^{-\dfrac{1}{2}{{t}^{2}}}}}$ is equal to $\dfrac{1}{\sqrt{2}}\Gamma \dfrac{1}{2}$ = $\sqrt{\dfrac{\pi }{2}}$
We can calculate $\int\limits_{0}^{\infty }{{{t}^{2}}{{e}^{-\dfrac{1}{2}{{t}^{2}}}}}$ is equal to $\sqrt{2}\Gamma \dfrac{3}{2}$ = $\sqrt{\dfrac{\pi }{2}}$
Replacing these values, we get
$\Rightarrow \int\limits_{-\infty }^{\infty }{{{x}^{2}}\dfrac{1}{\sigma \sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{\left( \dfrac{x-\alpha }{\sigma } \right)}^{2}}}}}dx-{{\alpha }^{2}}=\dfrac{2{{\alpha }^{2}}\sqrt{\pi }}{\sqrt{2\pi }\sqrt{2}}+\dfrac{2{{\sigma }^{2}}\sqrt{\pi }}{\sqrt{2\pi }\sqrt{2}}-{{\alpha }^{2}}$
$\Rightarrow \int\limits_{-\infty }^{\infty }{{{x}^{2}}\dfrac{1}{\sigma \sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{\left( \dfrac{x-\alpha }{\sigma } \right)}^{2}}}}}dx-{{\alpha }^{2}}={{\alpha }^{2}}+{{\sigma }^{2}}-{{\alpha }^{2}}$
$\Rightarrow \int\limits_{-\infty }^{\infty }{{{x}^{2}}\dfrac{1}{\sigma \sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{\left( \dfrac{x-\alpha }{\sigma } \right)}^{2}}}}}dx-{{\alpha }^{2}}={{\sigma }^{2}}$
So the variance is equal to ${{\sigma }^{2}}$
Note: The definition of gamma function is $\Gamma \left( x \right)=\int\limits_{0}^{\infty }{{{t}^{x-1}}{{e}^{-t}}dt}$ gamma of any positive integer is equal to factorial of the preceding number of that number. We can define gamma as $\Gamma \left( x \right)=\left( x-1 \right)\Gamma \left( x-1 \right)$ . Definition of even function is f( x ) = f( -x). The graph of an even function is always symmetric with respect to y axis and the odd function is f( x) = -f (x ). The probability density function of gaussian or normal distribution which $\dfrac{1}{\sigma \sqrt{2\pi }}{{e}^{-\dfrac{1}{2}{{\left( \dfrac{x-\alpha }{\sigma } \right)}^{2}}}}$ , the curve of this function is symmetric with respect to straight line x = $\alpha $.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
The gas that burns in oxygen with a green flame is class 12 chemistry CBSE

The probability that a leap year will have only 52 class 12 maths CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE
