
Define ideal simple pendulum. Show that under certain conditions, a simple pendulum performs linear simple harmonic motion.
Answer
573.6k+ views
Hint: Whenever the force is directly proportional to the negative of displacement, then it means that the body will execute a simple harmonic motion.
Complete step by step answer:
Ideal simple pendulum: An ideal simple pendulum is one which consists of a point mass suspended by a weightless inextensible perfectly flexible thread and free to vibrate without any friction.
Simple pendulum executing simple harmonic motion:
Let the mass of the bob is m, and L is the length to which it is suspended from a rigid support.
Let $\theta $ be the small angle in the vertical plane to which it is displaced, g is the acceleration due to gravity. Now resolves the weight components in vertical and horizontal components.
The two resolved components are $mg\sin \theta $ and$mg\cos \theta $.
Now the restoring force is given by-
$F = - mg\sin \theta $
Now as $\theta $ is very small therefore,$\sin \theta \approx \theta $
$F = - mg\theta $ …………..(1)
And $\theta = \dfrac{x}{L}$
Now substituting this in eq.(1) we get,
$F = - mg\left( {\dfrac{x}{L}} \right)$
$ \Rightarrow F \propto \left( { - x} \right)$
Since the restoring force is directly proportional to the negative of the displacement, hence the motion of the simple pendulum is simple harmonic in nature (SHM).
Conditions for a simple pendulum: Followings are the conditions of a simple pendulum-
(i) Bob must be a point heavy mass.
(ii) It must be suspended with a thread of negligible weight.
(iii) It must be supported by rigid support.
(iv) The amplitude should be very small.
Note:
Also remember that the acceleration is given by-
$
ma = - mg\dfrac{x}{L} \\
\Rightarrow a = - \dfrac{x}{L}g \\
$
Magnitude of Acceleration per unit displacement $\left| {\dfrac{a}{x}} \right| = \dfrac{g}{L}$
Time period is given by-
$
T = \dfrac{{2\pi }}{{\sqrt {\dfrac{g}{L}} }} \\
\Rightarrow T = 2\pi \sqrt {\dfrac{L}{g}} \\
$
Complete step by step answer:
Ideal simple pendulum: An ideal simple pendulum is one which consists of a point mass suspended by a weightless inextensible perfectly flexible thread and free to vibrate without any friction.
Simple pendulum executing simple harmonic motion:
Let the mass of the bob is m, and L is the length to which it is suspended from a rigid support.
Let $\theta $ be the small angle in the vertical plane to which it is displaced, g is the acceleration due to gravity. Now resolves the weight components in vertical and horizontal components.
The two resolved components are $mg\sin \theta $ and$mg\cos \theta $.
Now the restoring force is given by-
$F = - mg\sin \theta $
Now as $\theta $ is very small therefore,$\sin \theta \approx \theta $
$F = - mg\theta $ …………..(1)
And $\theta = \dfrac{x}{L}$
Now substituting this in eq.(1) we get,
$F = - mg\left( {\dfrac{x}{L}} \right)$
$ \Rightarrow F \propto \left( { - x} \right)$
Since the restoring force is directly proportional to the negative of the displacement, hence the motion of the simple pendulum is simple harmonic in nature (SHM).
Conditions for a simple pendulum: Followings are the conditions of a simple pendulum-
(i) Bob must be a point heavy mass.
(ii) It must be suspended with a thread of negligible weight.
(iii) It must be supported by rigid support.
(iv) The amplitude should be very small.
Note:
Also remember that the acceleration is given by-
$
ma = - mg\dfrac{x}{L} \\
\Rightarrow a = - \dfrac{x}{L}g \\
$
Magnitude of Acceleration per unit displacement $\left| {\dfrac{a}{x}} \right| = \dfrac{g}{L}$
Time period is given by-
$
T = \dfrac{{2\pi }}{{\sqrt {\dfrac{g}{L}} }} \\
\Rightarrow T = 2\pi \sqrt {\dfrac{L}{g}} \\
$
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

