
Define atomic radii , covalent radii , metallic radii ?
Answer
573k+ views
Hint: Since the atom is considered a sphere , the size of atom is given by the radius of the sphere . It is a very important property as many other properties are related to it .
Complete step by step answer:
Atomic radii :
Atomic radius can be defined in two ways --
The distance from the centre of the nucleus to the outermost shell containing electrons .
OR
The distance from the centre of the nucleus to the point upto which the density of the electron cloud ( probability of finding the electron ) is maximum .
Covalent radii :
Covalent radii is defined as one-half the distance between the nuclei of two covalently bonded atoms of the same element in a molecule.
Hence , for a homonuclear diatomic molecule ,
${r_{\operatorname{cov} alent}} = \dfrac{1}{2}$ [Internuclear distance between two bonded atoms ]
For example , the internuclear distance between two hydrogen atoms in the ${H_2}$ molecule is 74 pm
Therefore the covalent radius is $\dfrac{1}{2} \times 74 = 37pm$
Metallic radii :
Metallic radii is defined as one - half the internuclear distance between the two adjacent metal ions in the metallic lattice .
Note: When we compare the three types of atomic radii ( van der Waals radii , covalent radii , metallic radii ) we find out that van der Waals radius is the longest while covalent radius of an atom is the shortest , that is , van der Waals radius > metallic radius > covalent radius .
Complete step by step answer:
Atomic radii :
Atomic radius can be defined in two ways --
The distance from the centre of the nucleus to the outermost shell containing electrons .
OR
The distance from the centre of the nucleus to the point upto which the density of the electron cloud ( probability of finding the electron ) is maximum .
Covalent radii :
Covalent radii is defined as one-half the distance between the nuclei of two covalently bonded atoms of the same element in a molecule.
Hence , for a homonuclear diatomic molecule ,
${r_{\operatorname{cov} alent}} = \dfrac{1}{2}$ [Internuclear distance between two bonded atoms ]
For example , the internuclear distance between two hydrogen atoms in the ${H_2}$ molecule is 74 pm
Therefore the covalent radius is $\dfrac{1}{2} \times 74 = 37pm$
Metallic radii :
Metallic radii is defined as one - half the internuclear distance between the two adjacent metal ions in the metallic lattice .
Note: When we compare the three types of atomic radii ( van der Waals radii , covalent radii , metallic radii ) we find out that van der Waals radius is the longest while covalent radius of an atom is the shortest , that is , van der Waals radius > metallic radius > covalent radius .
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

