Answer

Verified

447.6k+ views

Hint: There are many units for measuring an angle. Two of these units are radians and degrees. It is possible to convert an angle from one unit to another unit. To convert an angle that is measured in radians to degrees, we must know that $\pi $ in radians is equal to 180 in degrees. Using this information, we can solve this question.

Complete step by step solution:

Before proceeding with the question, we must know the formula that will be required to solve this question.

To convert an angle from one unit to another, we have to do some changes in the angle. To convert the angle in radians to angle in degrees, we must know that $\pi $ in radians is equal to 180 in degrees. So, substituting $\pi =180$ in the angle in radians, we can convert it into degrees.

In the question, we are given an angle $\dfrac{\pi }{6}$ in radians and we are required to convert this angle to degrees. From the above paragraph, if we substitute $\pi =180$, we can convert this angle to degrees. Substituting, we get,

$\begin{align}

& \dfrac{\pi }{6}={{\dfrac{180}{6}}^{\circ }} \\

& \Rightarrow \dfrac{\pi }{6}={{30}^{\circ }} \\

\end{align}$

Hence, the angle $\dfrac{\pi }{6}$ in radians is equal to ${{30}^{\circ }}$ in degrees.

Note: This is an easy question if one has the basic knowledge to convert an angle from one unit to another unit. One must know that to convert an angle from radians to degrees, we have to substitute $\pi =180$. The only possibility of mistake which can be done in this question is calculation mistake. For example, one may calculate \[\dfrac{\pi }{6}={{60}^{\circ }}\] instead of $\dfrac{\pi }{6}={{30}^{\circ }}$.

Complete step by step solution:

Before proceeding with the question, we must know the formula that will be required to solve this question.

To convert an angle from one unit to another, we have to do some changes in the angle. To convert the angle in radians to angle in degrees, we must know that $\pi $ in radians is equal to 180 in degrees. So, substituting $\pi =180$ in the angle in radians, we can convert it into degrees.

In the question, we are given an angle $\dfrac{\pi }{6}$ in radians and we are required to convert this angle to degrees. From the above paragraph, if we substitute $\pi =180$, we can convert this angle to degrees. Substituting, we get,

$\begin{align}

& \dfrac{\pi }{6}={{\dfrac{180}{6}}^{\circ }} \\

& \Rightarrow \dfrac{\pi }{6}={{30}^{\circ }} \\

\end{align}$

Hence, the angle $\dfrac{\pi }{6}$ in radians is equal to ${{30}^{\circ }}$ in degrees.

Note: This is an easy question if one has the basic knowledge to convert an angle from one unit to another unit. One must know that to convert an angle from radians to degrees, we have to substitute $\pi =180$. The only possibility of mistake which can be done in this question is calculation mistake. For example, one may calculate \[\dfrac{\pi }{6}={{60}^{\circ }}\] instead of $\dfrac{\pi }{6}={{30}^{\circ }}$.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

How many crores make 10 million class 7 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths