How do you convert $r=4\cos \theta $ in rectangular form?
Answer
280.5k+ views
Hint: We explain the number of ways the position of a point or equation can be expressed in different forms. We also explain the ways of how representation works for polar and cartesian form. Then we convert the given equation into rectangular form using the relations $x=r\cos \theta ;y=r\sin \theta $.
Complete step-by-step solution:
There are always two ways to represent any point equation in our general 2-D and 3-D surfaces. One being the polar form and other one being the cartesian form. The other name of the cartesian form is rectangular form.
In case of polar form, we use the distance and the angle from the origin to get the position of the point or curve.
The given equation $r=4\cos \theta $ is a representation of the polar form. r represents the distance and $\theta $ represents the angle.
In case of rectangular form, we use the coordinates from the origin to get the position of the point or curve. For two dimensional things we have X-Y and for three dimensional things we have X-Y-Z. We take the perpendicular distances from the axes.
We need to convert the given equation $r=4\cos \theta $ into the rectangular form.
The relation between these two forms in two-dimensional is $x=r\cos \theta ;y=r\sin \theta ;{{x}^{2}}+{{y}^{2}}={{r}^{2}}$.
From the relations we get $\cos \theta =\dfrac{x}{r}$ and replace the value in the equation $r=4\cos \theta $ to get
\[\begin{align}
& r=4\cos \theta \\
& \Rightarrow r=4\left( \dfrac{x}{r} \right) \\
& \Rightarrow r=\dfrac{4x}{r} \\
& \Rightarrow 4x={{r}^{2}} \\
\end{align}\]
We now replace the value of ${{x}^{2}}+{{y}^{2}}={{r}^{2}}$ for the equation \[4x={{r}^{2}}\]. The revised equation becomes \[4x={{r}^{2}}={{x}^{2}}+{{y}^{2}}\].
The equation is an equation of circle \[{{x}^{2}}+{{y}^{2}}=4x\]. This is the rectangular form of $r=4\cos \theta $.
Note: In case of points for cartesian form we use x and y coordinates as $\left( x,y \right)$ to express their position in cartesian plane. The distance from origin is $r=\sqrt{{{x}^{2}}+{{y}^{2}}}$. This r represents the distance in polar form.
Complete step-by-step solution:
There are always two ways to represent any point equation in our general 2-D and 3-D surfaces. One being the polar form and other one being the cartesian form. The other name of the cartesian form is rectangular form.
In case of polar form, we use the distance and the angle from the origin to get the position of the point or curve.
The given equation $r=4\cos \theta $ is a representation of the polar form. r represents the distance and $\theta $ represents the angle.
In case of rectangular form, we use the coordinates from the origin to get the position of the point or curve. For two dimensional things we have X-Y and for three dimensional things we have X-Y-Z. We take the perpendicular distances from the axes.
We need to convert the given equation $r=4\cos \theta $ into the rectangular form.
The relation between these two forms in two-dimensional is $x=r\cos \theta ;y=r\sin \theta ;{{x}^{2}}+{{y}^{2}}={{r}^{2}}$.
From the relations we get $\cos \theta =\dfrac{x}{r}$ and replace the value in the equation $r=4\cos \theta $ to get
\[\begin{align}
& r=4\cos \theta \\
& \Rightarrow r=4\left( \dfrac{x}{r} \right) \\
& \Rightarrow r=\dfrac{4x}{r} \\
& \Rightarrow 4x={{r}^{2}} \\
\end{align}\]
We now replace the value of ${{x}^{2}}+{{y}^{2}}={{r}^{2}}$ for the equation \[4x={{r}^{2}}\]. The revised equation becomes \[4x={{r}^{2}}={{x}^{2}}+{{y}^{2}}\].
The equation is an equation of circle \[{{x}^{2}}+{{y}^{2}}=4x\]. This is the rectangular form of $r=4\cos \theta $.
Note: In case of points for cartesian form we use x and y coordinates as $\left( x,y \right)$ to express their position in cartesian plane. The distance from origin is $r=\sqrt{{{x}^{2}}+{{y}^{2}}}$. This r represents the distance in polar form.
Recently Updated Pages
Which of the following would not be a valid reason class 11 biology CBSE

What is meant by monosporic development of female class 11 biology CBSE

Draw labelled diagram of the following i Gram seed class 11 biology CBSE

Explain with the suitable examples the different types class 11 biology CBSE

How is pinnately compound leaf different from palmately class 11 biology CBSE

Match the following Column I Column I A Chlamydomonas class 11 biology CBSE

Trending doubts
What is 1 divided by 0 class 8 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

What is the past tense of read class 10 english CBSE

What is pollution? How many types of pollution? Define it

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

How many crores make 10 million class 7 maths CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

How fast is 60 miles per hour in kilometres per ho class 10 maths CBSE
