
Consider the system of linear equations \[{{x}_{1}}\text{ }+\text{ }2{{x}_{2}}\text{ }+\text{ }{{x}_{3}}\text{ }=\text{ }3\], \[\text{ }2{{x}_{1}}\text{ }+\text{ }3{{x}_{2}}\text{ }+\text{ }{{x}_{3}}\text{ }=\text{ }3\] and \[3{{x}_{1}}\text{ }+\text{ }5{{x}_{2}}\text{ }+\text{ }2{{x}_{3}}\text{ }=\text{ }1\]. The system has
(a) exactly 3 solutions
(b) a unique solution
(c) no solution
(d) infinite number of solutions
Answer
529.2k+ views
Hint: In order to find the solution of the given question, that is to find the nature of solution of the following \[{{x}_{1}}\text{ }+\text{ }2{{x}_{2}}\text{ }+\text{ }{{x}_{3}}\text{ }=\text{ }3\], \[\text{ }2{{x}_{1}}\text{ }+\text{ }3{{x}_{2}}\text{ }+\text{ }{{x}_{3}}\text{ }=\text{ }3\] and \[3{{x}_{1}}\text{ }+\text{ }5{{x}_{2}}\text{ }+\text{ }2{{x}_{3}}\text{ }=\text{ }1\] system of linear equation by using the following concepts, a system of linear equations has one solution when the graphs intersect at a point; a system of linear equations has no solution when the graphs are parallel or the determinant of the coefficient matrix is equal to zero and a system of linear equations has infinite solutions when the graphs are the exact same line.
Complete step by step solution:
According to the question, given system of equations is as follows:
\[\begin{align}
& {{x}_{1}}\text{ }+\text{ }2{{x}_{2}}\text{ }+\text{ }{{x}_{3}}\text{ }=\text{ }3 \\
& 2{{x}_{1}}\text{ }+\text{ }3{{x}_{2}}\text{ }+\text{ }{{x}_{3}}\text{ }=\text{ }3 \\
& 3{{x}_{1}}\text{ }+\text{ }5{{x}_{2}}\text{ }+\text{ }2{{x}_{3}}\text{ }=\text{ }1 \\
\end{align}\]
In order to find the nature of the solution of the given system of linear equations, we’ll first find the determinant of the coefficient matrix.
The coefficient matrix is \[\left[ \begin{matrix}
1 & 2 & 1 \\
2 & 3 & 1 \\
3 & 5 & 2 \\
\end{matrix} \right]\].
Determinant of the coefficient matrix is as follows:
\[\Rightarrow \left| \begin{matrix}
1 & 2 & 1 \\
2 & 3 & 1 \\
3 & 5 & 2 \\
\end{matrix} \right|\]
Now apply the row matrix operation on the above matrix, that is \[{{R}_{2}}\to {{R}_{2}}+{{R}_{1}}\], we get:
\[\Rightarrow \left| \begin{matrix}
1 & 2 & 1 \\
3 & 5 & 2 \\
3 & 5 & 2 \\
\end{matrix} \right|\]
Apply another row matrix operation on the above matrix, that is \[{{R}_{3}}\to {{R}_{3}}-{{R}_{2}}\], we get:
\[\Rightarrow \left| \begin{matrix}
1 & 2 & 1 \\
3 & 5 & 2 \\
0 & 0 & 0 \\
\end{matrix} \right|=0\]
Clearly, we can see the determinant of the coefficient matrix is zero and we know that a system of linear equations has no solution when the determinant of the coefficient matrix is equal to zero.
Therefore, the given system of linear equations has no solution and hence option (c) is the correct answer.
Note: There’s an alternative way to solve the given question:
A quick observation tells us that the sum of first two equations yields
\[\begin{align}
& \Rightarrow \left( {{x}_{1}}\text{ }+\text{ }2{{x}_{2}}\text{ }+\text{ }{{x}_{3}} \right)\text{ +}\left( 2{{x}_{1}}\text{ }+\text{ }3{{x}_{2}}\text{ }+\text{ }{{x}_{3}} \right)\text{ }=\text{ }3+3 \\
& \Rightarrow 3{{x}_{1}}\text{ }+\text{ }5{{x}_{2}}\text{ }+\text{ }2{{x}_{3}}\text{ }=\text{ 6} \\
\end{align}\]
But this contradicts the third equation, i.e.,
\[3{{x}_{1}}\text{ }+\text{ }5{{x}_{2}}\text{ }+\text{ }2{{x}_{3}}\text{ }=\text{ }1\]
As such the system is inconsistent and hence the given system of linear equations has no solution.
Complete step by step solution:
According to the question, given system of equations is as follows:
\[\begin{align}
& {{x}_{1}}\text{ }+\text{ }2{{x}_{2}}\text{ }+\text{ }{{x}_{3}}\text{ }=\text{ }3 \\
& 2{{x}_{1}}\text{ }+\text{ }3{{x}_{2}}\text{ }+\text{ }{{x}_{3}}\text{ }=\text{ }3 \\
& 3{{x}_{1}}\text{ }+\text{ }5{{x}_{2}}\text{ }+\text{ }2{{x}_{3}}\text{ }=\text{ }1 \\
\end{align}\]
In order to find the nature of the solution of the given system of linear equations, we’ll first find the determinant of the coefficient matrix.
The coefficient matrix is \[\left[ \begin{matrix}
1 & 2 & 1 \\
2 & 3 & 1 \\
3 & 5 & 2 \\
\end{matrix} \right]\].
Determinant of the coefficient matrix is as follows:
\[\Rightarrow \left| \begin{matrix}
1 & 2 & 1 \\
2 & 3 & 1 \\
3 & 5 & 2 \\
\end{matrix} \right|\]
Now apply the row matrix operation on the above matrix, that is \[{{R}_{2}}\to {{R}_{2}}+{{R}_{1}}\], we get:
\[\Rightarrow \left| \begin{matrix}
1 & 2 & 1 \\
3 & 5 & 2 \\
3 & 5 & 2 \\
\end{matrix} \right|\]
Apply another row matrix operation on the above matrix, that is \[{{R}_{3}}\to {{R}_{3}}-{{R}_{2}}\], we get:
\[\Rightarrow \left| \begin{matrix}
1 & 2 & 1 \\
3 & 5 & 2 \\
0 & 0 & 0 \\
\end{matrix} \right|=0\]
Clearly, we can see the determinant of the coefficient matrix is zero and we know that a system of linear equations has no solution when the determinant of the coefficient matrix is equal to zero.
Therefore, the given system of linear equations has no solution and hence option (c) is the correct answer.
Note: There’s an alternative way to solve the given question:
A quick observation tells us that the sum of first two equations yields
\[\begin{align}
& \Rightarrow \left( {{x}_{1}}\text{ }+\text{ }2{{x}_{2}}\text{ }+\text{ }{{x}_{3}} \right)\text{ +}\left( 2{{x}_{1}}\text{ }+\text{ }3{{x}_{2}}\text{ }+\text{ }{{x}_{3}} \right)\text{ }=\text{ }3+3 \\
& \Rightarrow 3{{x}_{1}}\text{ }+\text{ }5{{x}_{2}}\text{ }+\text{ }2{{x}_{3}}\text{ }=\text{ 6} \\
\end{align}\]
But this contradicts the third equation, i.e.,
\[3{{x}_{1}}\text{ }+\text{ }5{{x}_{2}}\text{ }+\text{ }2{{x}_{3}}\text{ }=\text{ }1\]
As such the system is inconsistent and hence the given system of linear equations has no solution.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

