Answer
Verified
390.6k+ views
Hint: We first find the relation between the terms and its number of repetitions. We also find the starting position of a new number and its repletion number. This gives the span of the terms in which 1025 lies. We find the term from that.
Complete step by step solution:
We need to carefully look at the sequence $1,2,2,4,4,4,4,8,8,8,8,8,8,8,8,......$.
We can see not only the increasing digits are in G.P. form, but also the number of terms for a particular digit is also in G.P and being equal to the value of the digit itself.
1 is 1 time, 2 is 2 times, 4 is 4 times, 8 is 8 times and so on.
The individual terms are in the form ${{2}^{n}},n=0\left( 1 \right)...$
We need to find the position of a particular digit at the starting point.
We can see ${{2}^{r}}$ starts after the number of terms for the ${{2}^{0}}$ to ${{2}^{r-1}}$ is preceding it.
So, the number of terms in the span of ${{2}^{0}}$ to end of ${{2}^{r-1}}$ will be ${{2}^{0}}+{{2}^{1}}+...+{{2}^{r-1}}$.
The value of the common ratio is 2 for which the sum of the first the terms of the G.P. will be ${{S}_{n}}={{t}_{1}}\dfrac{{{r}^{n}}-1}{r-1}$. So, ${{2}^{0}}+{{2}^{1}}+...+{{2}^{r-1}}=1\times \dfrac{{{2}^{r}}-1}{2-1}={{2}^{r}}-1$
So, the new digit ${{2}^{r}}$ starts at the position of ${{2}^{r}}-1+1={{2}^{r}}$ and goes on for ${{2}^{r}}$ terms.
The nearest form like ${{2}^{r}}$ of 1025 is $1024={{2}^{10}}$.
So, the new digit ${{2}^{10}}$ starts at the position of ${{2}^{10}}=1024$ and goes on for 1024 times.
Therefore, ${{1025}^{th}}$ term will be ${{2}^{10}}$. The correct option is (C).
Note:
We can’t mix the starting position and the number of terms preceding it. Both are needed to find the starting number and the digit of a particular span.
Complete step by step solution:
We need to carefully look at the sequence $1,2,2,4,4,4,4,8,8,8,8,8,8,8,8,......$.
We can see not only the increasing digits are in G.P. form, but also the number of terms for a particular digit is also in G.P and being equal to the value of the digit itself.
1 is 1 time, 2 is 2 times, 4 is 4 times, 8 is 8 times and so on.
The individual terms are in the form ${{2}^{n}},n=0\left( 1 \right)...$
We need to find the position of a particular digit at the starting point.
We can see ${{2}^{r}}$ starts after the number of terms for the ${{2}^{0}}$ to ${{2}^{r-1}}$ is preceding it.
So, the number of terms in the span of ${{2}^{0}}$ to end of ${{2}^{r-1}}$ will be ${{2}^{0}}+{{2}^{1}}+...+{{2}^{r-1}}$.
The value of the common ratio is 2 for which the sum of the first the terms of the G.P. will be ${{S}_{n}}={{t}_{1}}\dfrac{{{r}^{n}}-1}{r-1}$. So, ${{2}^{0}}+{{2}^{1}}+...+{{2}^{r-1}}=1\times \dfrac{{{2}^{r}}-1}{2-1}={{2}^{r}}-1$
So, the new digit ${{2}^{r}}$ starts at the position of ${{2}^{r}}-1+1={{2}^{r}}$ and goes on for ${{2}^{r}}$ terms.
The nearest form like ${{2}^{r}}$ of 1025 is $1024={{2}^{10}}$.
So, the new digit ${{2}^{10}}$ starts at the position of ${{2}^{10}}=1024$ and goes on for 1024 times.
Therefore, ${{1025}^{th}}$ term will be ${{2}^{10}}$. The correct option is (C).
Note:
We can’t mix the starting position and the number of terms preceding it. Both are needed to find the starting number and the digit of a particular span.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Kaziranga National Park is famous for A Lion B Tiger class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE