
Consider the parabola ${y^2} = 8x$. Let ${\vartriangle _1}$ be the area of the triangle formed by the end points of its latus rectum and the point $P\left( {\dfrac{1}{2},2} \right)$ on the parabola, and ${\vartriangle _2}$ be the area of the triangle formed by drawing tangents at $P$ and the end points of the latus rectum. Then $\dfrac{{{\vartriangle _1}}}{{{\vartriangle _2}}}$is :
(A) $2$
(B) $3$
(C) $4$
(D) $1$
Answer
577.5k+ views
Hint: Firstly, find out the endpoints of latus rectum of the given parabola ${y^2} = 8x$ ,i.e., $\left( {a,2a} \right)$and $\left( {a, - 2a} \right)$. Now, find the equations of tangent $\left[ {y - {y_1} = \left( {\dfrac{{dy}}{{dx}}} \right)\left( {x - {x_1}} \right)} \right]$ at point $P$ and the end points of the latus rectum and solve them to find the point of intersection.
Find the area of triangle formed by joining the three given points $\left( {{x_1},{y_1}} \right),\left( {{x_2},{y_2}} \right)$ and $\left( {{x_3},{y_3}} \right)$ by using the formula :$\dfrac{1}{2}\left[ {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right]$.
Complete step-by-step answer:
Given, Equation of parabola ${y^2} = 8x$
Compare this equation of parabola with the standard equation of parabola i.e., ${y^2} = 4ax$, we get-
$4a = 8 \Rightarrow a = 2$ …. (1)
The end points of latus rectum are given by $M$$\left( {a,2a} \right)$ and $N$$\left( {a, - 2a} \right)$. So end points of latus rectum are $M$$\left( {2,4} \right)$ and $N$$\left( {2, - 4} \right)$.
The area of triangle formed by joining the three given points is calculated by $\dfrac{1}{2}\left[ {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right]$.
So, the area of triangle formed by joining the end points of latus rectum $M$$\left( {2,4} \right)$,$N$$\left( {2, - 4} \right)$and $P\left( {\dfrac{1}{2},2} \right)$
${\vartriangle _1}$$ = \dfrac{1}{2}\left[ {2\left( { - 4 - 2} \right) + 2\left( {2 - 4} \right) + \dfrac{1}{2}\left( {4 + 4} \right)} \right]$
${\vartriangle _1}$$ = \dfrac{1}{2}\left[ {2\left( { - 6} \right) + 2\left( { - 2} \right) + \dfrac{1}{2}\left( 8 \right)} \right]$
${\vartriangle _1}$$ = \dfrac{1}{2}\left[ { - 12 - 4 + 4} \right]$
${\vartriangle _1}$$ = \dfrac{1}{2} \times - 12$
${\vartriangle _1}$$ = - 6$
Since, the area of a triangle can never be negative.
Therefore, ${\vartriangle _1}$$ = 6$ sq. units
Now we have to find ${\vartriangle _2}$ which is the area of the triangle formed by drawing tangents at $P$ and the end points of the latus rectum $M$ and $N$.
Given, Equation of parabola ${y^2} = 8x$
Differentiate it with respect to $x$ to find out the value of slope, i.e., $m = $$\dfrac{{dy}}{{dx}}$
$
\Rightarrow 2y\dfrac{{dy}}{{dx}} = 8 \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{8}{{2y}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{4}{y} \\
$
Thus, $m = \dfrac{{dy}}{{dx}} = \dfrac{4}{y}$
Slope at point $M\left( {2,4} \right)$$ \Rightarrow $$m = $${\left( {\dfrac{{dy}}{{dx}}} \right)_M} = \dfrac{4}{4} = 1$
The equation of tangent at $M\left( {2,4} \right)$ is given by
$y - {y_1} = {\left( {\dfrac{{dy}}{{dx}}} \right)_M}\left( {x - {x_1}} \right)$
$ \Rightarrow y - 4 = 1\left( {x - 2} \right)$
$ \Rightarrow y - 4 = x - 2$
$ \Rightarrow y = x + 2$ …. (1)
Slope at point $N\left( {2, - 4} \right)$$ \Rightarrow $$m = $${\left( {\dfrac{{dy}}{{dx}}} \right)_N} = \dfrac{4}{{ - 4}} = - 1$
The equation of tangent at $N\left( {2, - 4} \right)$ is given by
$y - {y_1} = {\left( {\dfrac{{dy}}{{dx}}} \right)_N}\left( {x - {x_1}} \right)$
$ \Rightarrow y + 4 = - 1\left( {x - 2} \right)$
$ \Rightarrow y + 4 = - x + 2$
$ \Rightarrow y = - x - 2$…. (2)
Slope at point $P\left( {\dfrac{1}{2},2} \right)$$ \Rightarrow $$m = $${\left( {\dfrac{{dy}}{{dx}}} \right)_P} = \dfrac{4}{2} = 2$
The equation of tangent at$P\left( {\dfrac{1}{2},2} \right)$ is given by
$y - {y_1} = {\left( {\dfrac{{dy}}{{dx}}} \right)_P}\left( {x - {x_1}} \right)$
$ \Rightarrow y - 2 = 2\left( {x - \dfrac{1}{2}} \right)$
$ \Rightarrow y - 2 = 2x - 1$
$ \Rightarrow y = 2x + 1$ …. (3)
On solving (1) and (2), we get the point of intersection of (1) and (2), i.e., $\left( { - 2,0} \right) & $.
On solving (2) and (3), we get the point of intersection of (2) and (3), i.e., $\left( { - 1, - 1} \right)$ .
On solving (1) and (3), we get the point of intersection of (1) and (3), i.e., $\left( {1,3} \right)$.
Now ${\vartriangle _2}$is the area of triangle formed by joining the points $\left( { - 2,0} \right),\left( { - 1, - 1} \right)$and $\left( {1,3} \right)$
${\vartriangle _2}$=$\dfrac{1}{2}\left[ {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right]$
$ \Rightarrow $${\vartriangle _2} = \dfrac{1}{2}\left[ { - 2\left( { - 1 - 3} \right) - 1\left( {3 - 0} \right) + 1\left( {0 + 1} \right)} \right]$
$ \Rightarrow $${\vartriangle _2} = \dfrac{1}{2}\left[ { - 2\left( { - 4} \right) - 1\left( 3 \right) + 1\left( 1 \right)} \right]$
$ \Rightarrow $${\vartriangle _2} = \dfrac{1}{2}\left[ {8 - 3 + 1} \right]$
$ \Rightarrow $\[{\vartriangle _2} = \dfrac{1}{2} \times 6\]
$ \Rightarrow $\[{\vartriangle _2} = 3\] sq. units
Now, $\dfrac{{{\vartriangle _1}}}{{{\vartriangle _2}}} = \dfrac{6}{3} = 2$
Hence, option (A) is the correct answer.
Note: An alternative method to solve this question is a theorem which states that the area of a triangle formed by three points on a parabola is twice the area of triangle formed by tangents at those points.
$\therefore {\vartriangle _1} = 2{\vartriangle _2}$$ \Rightarrow \dfrac{{{\vartriangle _1}}}{{{\vartriangle _2}}} = 2$
Find the area of triangle formed by joining the three given points $\left( {{x_1},{y_1}} \right),\left( {{x_2},{y_2}} \right)$ and $\left( {{x_3},{y_3}} \right)$ by using the formula :$\dfrac{1}{2}\left[ {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right]$.
Complete step-by-step answer:
Given, Equation of parabola ${y^2} = 8x$
Compare this equation of parabola with the standard equation of parabola i.e., ${y^2} = 4ax$, we get-
$4a = 8 \Rightarrow a = 2$ …. (1)
The end points of latus rectum are given by $M$$\left( {a,2a} \right)$ and $N$$\left( {a, - 2a} \right)$. So end points of latus rectum are $M$$\left( {2,4} \right)$ and $N$$\left( {2, - 4} \right)$.
The area of triangle formed by joining the three given points is calculated by $\dfrac{1}{2}\left[ {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right]$.
So, the area of triangle formed by joining the end points of latus rectum $M$$\left( {2,4} \right)$,$N$$\left( {2, - 4} \right)$and $P\left( {\dfrac{1}{2},2} \right)$
${\vartriangle _1}$$ = \dfrac{1}{2}\left[ {2\left( { - 4 - 2} \right) + 2\left( {2 - 4} \right) + \dfrac{1}{2}\left( {4 + 4} \right)} \right]$
${\vartriangle _1}$$ = \dfrac{1}{2}\left[ {2\left( { - 6} \right) + 2\left( { - 2} \right) + \dfrac{1}{2}\left( 8 \right)} \right]$
${\vartriangle _1}$$ = \dfrac{1}{2}\left[ { - 12 - 4 + 4} \right]$
${\vartriangle _1}$$ = \dfrac{1}{2} \times - 12$
${\vartriangle _1}$$ = - 6$
Since, the area of a triangle can never be negative.
Therefore, ${\vartriangle _1}$$ = 6$ sq. units
Now we have to find ${\vartriangle _2}$ which is the area of the triangle formed by drawing tangents at $P$ and the end points of the latus rectum $M$ and $N$.
Given, Equation of parabola ${y^2} = 8x$
Differentiate it with respect to $x$ to find out the value of slope, i.e., $m = $$\dfrac{{dy}}{{dx}}$
$
\Rightarrow 2y\dfrac{{dy}}{{dx}} = 8 \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{8}{{2y}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{4}{y} \\
$
Thus, $m = \dfrac{{dy}}{{dx}} = \dfrac{4}{y}$
Slope at point $M\left( {2,4} \right)$$ \Rightarrow $$m = $${\left( {\dfrac{{dy}}{{dx}}} \right)_M} = \dfrac{4}{4} = 1$
The equation of tangent at $M\left( {2,4} \right)$ is given by
$y - {y_1} = {\left( {\dfrac{{dy}}{{dx}}} \right)_M}\left( {x - {x_1}} \right)$
$ \Rightarrow y - 4 = 1\left( {x - 2} \right)$
$ \Rightarrow y - 4 = x - 2$
$ \Rightarrow y = x + 2$ …. (1)
Slope at point $N\left( {2, - 4} \right)$$ \Rightarrow $$m = $${\left( {\dfrac{{dy}}{{dx}}} \right)_N} = \dfrac{4}{{ - 4}} = - 1$
The equation of tangent at $N\left( {2, - 4} \right)$ is given by
$y - {y_1} = {\left( {\dfrac{{dy}}{{dx}}} \right)_N}\left( {x - {x_1}} \right)$
$ \Rightarrow y + 4 = - 1\left( {x - 2} \right)$
$ \Rightarrow y + 4 = - x + 2$
$ \Rightarrow y = - x - 2$…. (2)
Slope at point $P\left( {\dfrac{1}{2},2} \right)$$ \Rightarrow $$m = $${\left( {\dfrac{{dy}}{{dx}}} \right)_P} = \dfrac{4}{2} = 2$
The equation of tangent at$P\left( {\dfrac{1}{2},2} \right)$ is given by
$y - {y_1} = {\left( {\dfrac{{dy}}{{dx}}} \right)_P}\left( {x - {x_1}} \right)$
$ \Rightarrow y - 2 = 2\left( {x - \dfrac{1}{2}} \right)$
$ \Rightarrow y - 2 = 2x - 1$
$ \Rightarrow y = 2x + 1$ …. (3)
On solving (1) and (2), we get the point of intersection of (1) and (2), i.e., $\left( { - 2,0} \right) & $.
On solving (2) and (3), we get the point of intersection of (2) and (3), i.e., $\left( { - 1, - 1} \right)$ .
On solving (1) and (3), we get the point of intersection of (1) and (3), i.e., $\left( {1,3} \right)$.
Now ${\vartriangle _2}$is the area of triangle formed by joining the points $\left( { - 2,0} \right),\left( { - 1, - 1} \right)$and $\left( {1,3} \right)$
${\vartriangle _2}$=$\dfrac{1}{2}\left[ {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right]$
$ \Rightarrow $${\vartriangle _2} = \dfrac{1}{2}\left[ { - 2\left( { - 1 - 3} \right) - 1\left( {3 - 0} \right) + 1\left( {0 + 1} \right)} \right]$
$ \Rightarrow $${\vartriangle _2} = \dfrac{1}{2}\left[ { - 2\left( { - 4} \right) - 1\left( 3 \right) + 1\left( 1 \right)} \right]$
$ \Rightarrow $${\vartriangle _2} = \dfrac{1}{2}\left[ {8 - 3 + 1} \right]$
$ \Rightarrow $\[{\vartriangle _2} = \dfrac{1}{2} \times 6\]
$ \Rightarrow $\[{\vartriangle _2} = 3\] sq. units
Now, $\dfrac{{{\vartriangle _1}}}{{{\vartriangle _2}}} = \dfrac{6}{3} = 2$
Hence, option (A) is the correct answer.
Note: An alternative method to solve this question is a theorem which states that the area of a triangle formed by three points on a parabola is twice the area of triangle formed by tangents at those points.
$\therefore {\vartriangle _1} = 2{\vartriangle _2}$$ \Rightarrow \dfrac{{{\vartriangle _1}}}{{{\vartriangle _2}}} = 2$
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is the Full Form of ISI and RAW

Golden Revolution is related to AFood production BOil class 9 social science CBSE

