
Consider the number 21600. Find the sum of its divisors.
Answer
591.9k+ views
Hint: Factorize the given number in its prime factor form. If a number can be written as ${p_1}^a \times {p_2}^b \times {p_3}^c....$, where ${p_1},{p_2}$ and ${p_3}$ are prime numbers, then the sum of its divisors will be $\dfrac{{{p_1}^{a + 1} - 1}}{{{p_1} - 1}} \times \dfrac{{{p_2}^{b + 1} - 1}}{{{p_2} - 1}} \times \dfrac{{{p_3}^{c + 1} - 1}}{{{p_3} - 1}} \times ....$ Use this formula to find out the sum of the divisors.
Complete step-by-step answer:
According to the question, the given number is 21600. We have to determine the sum of its divisors.
This number can be written as:
$
\Rightarrow 21600 = 216 \times 100 \\
\Rightarrow 21600 = {6^3} \times 100 \\
\Rightarrow 21600 = {\left( {2 \times 3} \right)^3} \times 4 \times 25 \\
\Rightarrow 21600 = {2^3} \times {3^3} \times {2^2} \times {5^2} \\
\Rightarrow 21600 = {2^5} \times {3^3} \times {5^2} \\
$
Thus, the number is factorized in its prime factor form.
We know that if a number can be written as ${p_1}^a \times {p_2}^b \times {p_3}^c....$, where ${p_1},{p_2}$ and ${p_3}$ are prime numbers, then the sum of its divisors will be $\dfrac{{{p_1}^{a + 1} - 1}}{{{p_1} - 1}} \times \dfrac{{{p_2}^{b + 1} - 1}}{{{p_2} - 1}} \times \dfrac{{{p_3}^{c + 1} - 1}}{{{p_3} - 1}} \times ....$
Using above formula for $21600 = {2^5} \times {3^3} \times {5^2}$, we’ll get:
$ \Rightarrow $ Sum of divisors $ = \dfrac{{{2^{5 + 1}} - 1}}{{2 - 1}} \times \dfrac{{{3^{3 + 1}} - 1}}{{3 - 1}} \times \dfrac{{{5^{2 + 1}} - 1}}{{5 - 1}}$
$ \Rightarrow $ Sum of divisors $ = \dfrac{{{2^6} - 1}}{{2 - 1}} \times \dfrac{{{3^4} - 1}}{{3 - 1}} \times \dfrac{{{5^3} - 1}}{{5 - 1}} = \dfrac{{64 - 1}}{1} \times \dfrac{{81 - 1}}{2} \times \dfrac{{125 - 1}}{4}$
$ \Rightarrow $ Sum of divisors $ = 63 \times \dfrac{{80}}{2} \times \dfrac{{124}}{4} = 63 \times 40 \times 31$
$ \Rightarrow $ Sum of divisors $ = 78120$
Therefore, the sum of the divisors of 21600 is 78120.
Note: We can also find out the number of divisors of 21600.
We know that if a number can be written as ${p_1}^a \times {p_2}^b \times {p_3}^c....$, where ${p_1},{p_2}$ and ${p_3}$ are prime numbers, then the number of factors of this number is $\left( {a + 1} \right) \times \left( {b + 1} \right) \times \left( {c + 1} \right) \times ...$
Thus, the number of factors of $21600 = {2^5} \times {3^3} \times {5^2}$ will be:
$
\Rightarrow {\text{ No}}{\text{. of factors }} = \left( {5 + 1} \right)\left( {3 + 1} \right)\left( {2 + 1} \right) = 6 \times 4 \times 3 \\
\Rightarrow {\text{ No}}{\text{. of factors }} = 72 \\
$
Complete step-by-step answer:
According to the question, the given number is 21600. We have to determine the sum of its divisors.
This number can be written as:
$
\Rightarrow 21600 = 216 \times 100 \\
\Rightarrow 21600 = {6^3} \times 100 \\
\Rightarrow 21600 = {\left( {2 \times 3} \right)^3} \times 4 \times 25 \\
\Rightarrow 21600 = {2^3} \times {3^3} \times {2^2} \times {5^2} \\
\Rightarrow 21600 = {2^5} \times {3^3} \times {5^2} \\
$
Thus, the number is factorized in its prime factor form.
We know that if a number can be written as ${p_1}^a \times {p_2}^b \times {p_3}^c....$, where ${p_1},{p_2}$ and ${p_3}$ are prime numbers, then the sum of its divisors will be $\dfrac{{{p_1}^{a + 1} - 1}}{{{p_1} - 1}} \times \dfrac{{{p_2}^{b + 1} - 1}}{{{p_2} - 1}} \times \dfrac{{{p_3}^{c + 1} - 1}}{{{p_3} - 1}} \times ....$
Using above formula for $21600 = {2^5} \times {3^3} \times {5^2}$, we’ll get:
$ \Rightarrow $ Sum of divisors $ = \dfrac{{{2^{5 + 1}} - 1}}{{2 - 1}} \times \dfrac{{{3^{3 + 1}} - 1}}{{3 - 1}} \times \dfrac{{{5^{2 + 1}} - 1}}{{5 - 1}}$
$ \Rightarrow $ Sum of divisors $ = \dfrac{{{2^6} - 1}}{{2 - 1}} \times \dfrac{{{3^4} - 1}}{{3 - 1}} \times \dfrac{{{5^3} - 1}}{{5 - 1}} = \dfrac{{64 - 1}}{1} \times \dfrac{{81 - 1}}{2} \times \dfrac{{125 - 1}}{4}$
$ \Rightarrow $ Sum of divisors $ = 63 \times \dfrac{{80}}{2} \times \dfrac{{124}}{4} = 63 \times 40 \times 31$
$ \Rightarrow $ Sum of divisors $ = 78120$
Therefore, the sum of the divisors of 21600 is 78120.
Note: We can also find out the number of divisors of 21600.
We know that if a number can be written as ${p_1}^a \times {p_2}^b \times {p_3}^c....$, where ${p_1},{p_2}$ and ${p_3}$ are prime numbers, then the number of factors of this number is $\left( {a + 1} \right) \times \left( {b + 1} \right) \times \left( {c + 1} \right) \times ...$
Thus, the number of factors of $21600 = {2^5} \times {3^3} \times {5^2}$ will be:
$
\Rightarrow {\text{ No}}{\text{. of factors }} = \left( {5 + 1} \right)\left( {3 + 1} \right)\left( {2 + 1} \right) = 6 \times 4 \times 3 \\
\Rightarrow {\text{ No}}{\text{. of factors }} = 72 \\
$
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

How many 5 digit telephone numbers can be constructed class 11 maths CBSE

Draw a well labelled diagram of reflex arc and explain class 11 biology CBSE

What is the difference between noise and music Can class 11 physics CBSE

A current I is flowing through wire PQR This wire is class 11 physics CBSE

Trending doubts
1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Swaraj means AComplete Independence B Self rule C Self class 11 social science CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

