Answer
Verified
472.5k+ views
Hint: Factorize the given number in its prime factor form. If a number can be written as ${p_1}^a \times {p_2}^b \times {p_3}^c....$, where ${p_1},{p_2}$ and ${p_3}$ are prime numbers, then the sum of its divisors will be $\dfrac{{{p_1}^{a + 1} - 1}}{{{p_1} - 1}} \times \dfrac{{{p_2}^{b + 1} - 1}}{{{p_2} - 1}} \times \dfrac{{{p_3}^{c + 1} - 1}}{{{p_3} - 1}} \times ....$ Use this formula to find out the sum of the divisors.
Complete step-by-step answer:
According to the question, the given number is 21600. We have to determine the sum of its divisors.
This number can be written as:
$
\Rightarrow 21600 = 216 \times 100 \\
\Rightarrow 21600 = {6^3} \times 100 \\
\Rightarrow 21600 = {\left( {2 \times 3} \right)^3} \times 4 \times 25 \\
\Rightarrow 21600 = {2^3} \times {3^3} \times {2^2} \times {5^2} \\
\Rightarrow 21600 = {2^5} \times {3^3} \times {5^2} \\
$
Thus, the number is factorized in its prime factor form.
We know that if a number can be written as ${p_1}^a \times {p_2}^b \times {p_3}^c....$, where ${p_1},{p_2}$ and ${p_3}$ are prime numbers, then the sum of its divisors will be $\dfrac{{{p_1}^{a + 1} - 1}}{{{p_1} - 1}} \times \dfrac{{{p_2}^{b + 1} - 1}}{{{p_2} - 1}} \times \dfrac{{{p_3}^{c + 1} - 1}}{{{p_3} - 1}} \times ....$
Using above formula for $21600 = {2^5} \times {3^3} \times {5^2}$, we’ll get:
$ \Rightarrow $ Sum of divisors $ = \dfrac{{{2^{5 + 1}} - 1}}{{2 - 1}} \times \dfrac{{{3^{3 + 1}} - 1}}{{3 - 1}} \times \dfrac{{{5^{2 + 1}} - 1}}{{5 - 1}}$
$ \Rightarrow $ Sum of divisors $ = \dfrac{{{2^6} - 1}}{{2 - 1}} \times \dfrac{{{3^4} - 1}}{{3 - 1}} \times \dfrac{{{5^3} - 1}}{{5 - 1}} = \dfrac{{64 - 1}}{1} \times \dfrac{{81 - 1}}{2} \times \dfrac{{125 - 1}}{4}$
$ \Rightarrow $ Sum of divisors $ = 63 \times \dfrac{{80}}{2} \times \dfrac{{124}}{4} = 63 \times 40 \times 31$
$ \Rightarrow $ Sum of divisors $ = 78120$
Therefore, the sum of the divisors of 21600 is 78120.
Note: We can also find out the number of divisors of 21600.
We know that if a number can be written as ${p_1}^a \times {p_2}^b \times {p_3}^c....$, where ${p_1},{p_2}$ and ${p_3}$ are prime numbers, then the number of factors of this number is $\left( {a + 1} \right) \times \left( {b + 1} \right) \times \left( {c + 1} \right) \times ...$
Thus, the number of factors of $21600 = {2^5} \times {3^3} \times {5^2}$ will be:
$
\Rightarrow {\text{ No}}{\text{. of factors }} = \left( {5 + 1} \right)\left( {3 + 1} \right)\left( {2 + 1} \right) = 6 \times 4 \times 3 \\
\Rightarrow {\text{ No}}{\text{. of factors }} = 72 \\
$
Complete step-by-step answer:
According to the question, the given number is 21600. We have to determine the sum of its divisors.
This number can be written as:
$
\Rightarrow 21600 = 216 \times 100 \\
\Rightarrow 21600 = {6^3} \times 100 \\
\Rightarrow 21600 = {\left( {2 \times 3} \right)^3} \times 4 \times 25 \\
\Rightarrow 21600 = {2^3} \times {3^3} \times {2^2} \times {5^2} \\
\Rightarrow 21600 = {2^5} \times {3^3} \times {5^2} \\
$
Thus, the number is factorized in its prime factor form.
We know that if a number can be written as ${p_1}^a \times {p_2}^b \times {p_3}^c....$, where ${p_1},{p_2}$ and ${p_3}$ are prime numbers, then the sum of its divisors will be $\dfrac{{{p_1}^{a + 1} - 1}}{{{p_1} - 1}} \times \dfrac{{{p_2}^{b + 1} - 1}}{{{p_2} - 1}} \times \dfrac{{{p_3}^{c + 1} - 1}}{{{p_3} - 1}} \times ....$
Using above formula for $21600 = {2^5} \times {3^3} \times {5^2}$, we’ll get:
$ \Rightarrow $ Sum of divisors $ = \dfrac{{{2^{5 + 1}} - 1}}{{2 - 1}} \times \dfrac{{{3^{3 + 1}} - 1}}{{3 - 1}} \times \dfrac{{{5^{2 + 1}} - 1}}{{5 - 1}}$
$ \Rightarrow $ Sum of divisors $ = \dfrac{{{2^6} - 1}}{{2 - 1}} \times \dfrac{{{3^4} - 1}}{{3 - 1}} \times \dfrac{{{5^3} - 1}}{{5 - 1}} = \dfrac{{64 - 1}}{1} \times \dfrac{{81 - 1}}{2} \times \dfrac{{125 - 1}}{4}$
$ \Rightarrow $ Sum of divisors $ = 63 \times \dfrac{{80}}{2} \times \dfrac{{124}}{4} = 63 \times 40 \times 31$
$ \Rightarrow $ Sum of divisors $ = 78120$
Therefore, the sum of the divisors of 21600 is 78120.
Note: We can also find out the number of divisors of 21600.
We know that if a number can be written as ${p_1}^a \times {p_2}^b \times {p_3}^c....$, where ${p_1},{p_2}$ and ${p_3}$ are prime numbers, then the number of factors of this number is $\left( {a + 1} \right) \times \left( {b + 1} \right) \times \left( {c + 1} \right) \times ...$
Thus, the number of factors of $21600 = {2^5} \times {3^3} \times {5^2}$ will be:
$
\Rightarrow {\text{ No}}{\text{. of factors }} = \left( {5 + 1} \right)\left( {3 + 1} \right)\left( {2 + 1} \right) = 6 \times 4 \times 3 \\
\Rightarrow {\text{ No}}{\text{. of factors }} = 72 \\
$
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
At which age domestication of animals started A Neolithic class 11 social science CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Summary of the poem Where the Mind is Without Fear class 8 english CBSE
One cusec is equal to how many liters class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE