# Consider the number 21600. Find the sum of its divisors.

Last updated date: 23rd Mar 2023

•

Total views: 306k

•

Views today: 3.83k

Answer

Verified

306k+ views

Hint: Factorize the given number in its prime factor form. If a number can be written as ${p_1}^a \times {p_2}^b \times {p_3}^c....$, where ${p_1},{p_2}$ and ${p_3}$ are prime numbers, then the sum of its divisors will be $\dfrac{{{p_1}^{a + 1} - 1}}{{{p_1} - 1}} \times \dfrac{{{p_2}^{b + 1} - 1}}{{{p_2} - 1}} \times \dfrac{{{p_3}^{c + 1} - 1}}{{{p_3} - 1}} \times ....$ Use this formula to find out the sum of the divisors.

Complete step-by-step answer:

According to the question, the given number is 21600. We have to determine the sum of its divisors.

This number can be written as:

$

\Rightarrow 21600 = 216 \times 100 \\

\Rightarrow 21600 = {6^3} \times 100 \\

\Rightarrow 21600 = {\left( {2 \times 3} \right)^3} \times 4 \times 25 \\

\Rightarrow 21600 = {2^3} \times {3^3} \times {2^2} \times {5^2} \\

\Rightarrow 21600 = {2^5} \times {3^3} \times {5^2} \\

$

Thus, the number is factorized in its prime factor form.

We know that if a number can be written as ${p_1}^a \times {p_2}^b \times {p_3}^c....$, where ${p_1},{p_2}$ and ${p_3}$ are prime numbers, then the sum of its divisors will be $\dfrac{{{p_1}^{a + 1} - 1}}{{{p_1} - 1}} \times \dfrac{{{p_2}^{b + 1} - 1}}{{{p_2} - 1}} \times \dfrac{{{p_3}^{c + 1} - 1}}{{{p_3} - 1}} \times ....$

Using above formula for $21600 = {2^5} \times {3^3} \times {5^2}$, we’ll get:

$ \Rightarrow $ Sum of divisors $ = \dfrac{{{2^{5 + 1}} - 1}}{{2 - 1}} \times \dfrac{{{3^{3 + 1}} - 1}}{{3 - 1}} \times \dfrac{{{5^{2 + 1}} - 1}}{{5 - 1}}$

$ \Rightarrow $ Sum of divisors $ = \dfrac{{{2^6} - 1}}{{2 - 1}} \times \dfrac{{{3^4} - 1}}{{3 - 1}} \times \dfrac{{{5^3} - 1}}{{5 - 1}} = \dfrac{{64 - 1}}{1} \times \dfrac{{81 - 1}}{2} \times \dfrac{{125 - 1}}{4}$

$ \Rightarrow $ Sum of divisors $ = 63 \times \dfrac{{80}}{2} \times \dfrac{{124}}{4} = 63 \times 40 \times 31$

$ \Rightarrow $ Sum of divisors $ = 78120$

Therefore, the sum of the divisors of 21600 is 78120.

Note: We can also find out the number of divisors of 21600.

We know that if a number can be written as ${p_1}^a \times {p_2}^b \times {p_3}^c....$, where ${p_1},{p_2}$ and ${p_3}$ are prime numbers, then the number of factors of this number is $\left( {a + 1} \right) \times \left( {b + 1} \right) \times \left( {c + 1} \right) \times ...$

Thus, the number of factors of $21600 = {2^5} \times {3^3} \times {5^2}$ will be:

$

\Rightarrow {\text{ No}}{\text{. of factors }} = \left( {5 + 1} \right)\left( {3 + 1} \right)\left( {2 + 1} \right) = 6 \times 4 \times 3 \\

\Rightarrow {\text{ No}}{\text{. of factors }} = 72 \\

$

Complete step-by-step answer:

According to the question, the given number is 21600. We have to determine the sum of its divisors.

This number can be written as:

$

\Rightarrow 21600 = 216 \times 100 \\

\Rightarrow 21600 = {6^3} \times 100 \\

\Rightarrow 21600 = {\left( {2 \times 3} \right)^3} \times 4 \times 25 \\

\Rightarrow 21600 = {2^3} \times {3^3} \times {2^2} \times {5^2} \\

\Rightarrow 21600 = {2^5} \times {3^3} \times {5^2} \\

$

Thus, the number is factorized in its prime factor form.

We know that if a number can be written as ${p_1}^a \times {p_2}^b \times {p_3}^c....$, where ${p_1},{p_2}$ and ${p_3}$ are prime numbers, then the sum of its divisors will be $\dfrac{{{p_1}^{a + 1} - 1}}{{{p_1} - 1}} \times \dfrac{{{p_2}^{b + 1} - 1}}{{{p_2} - 1}} \times \dfrac{{{p_3}^{c + 1} - 1}}{{{p_3} - 1}} \times ....$

Using above formula for $21600 = {2^5} \times {3^3} \times {5^2}$, we’ll get:

$ \Rightarrow $ Sum of divisors $ = \dfrac{{{2^{5 + 1}} - 1}}{{2 - 1}} \times \dfrac{{{3^{3 + 1}} - 1}}{{3 - 1}} \times \dfrac{{{5^{2 + 1}} - 1}}{{5 - 1}}$

$ \Rightarrow $ Sum of divisors $ = \dfrac{{{2^6} - 1}}{{2 - 1}} \times \dfrac{{{3^4} - 1}}{{3 - 1}} \times \dfrac{{{5^3} - 1}}{{5 - 1}} = \dfrac{{64 - 1}}{1} \times \dfrac{{81 - 1}}{2} \times \dfrac{{125 - 1}}{4}$

$ \Rightarrow $ Sum of divisors $ = 63 \times \dfrac{{80}}{2} \times \dfrac{{124}}{4} = 63 \times 40 \times 31$

$ \Rightarrow $ Sum of divisors $ = 78120$

Therefore, the sum of the divisors of 21600 is 78120.

Note: We can also find out the number of divisors of 21600.

We know that if a number can be written as ${p_1}^a \times {p_2}^b \times {p_3}^c....$, where ${p_1},{p_2}$ and ${p_3}$ are prime numbers, then the number of factors of this number is $\left( {a + 1} \right) \times \left( {b + 1} \right) \times \left( {c + 1} \right) \times ...$

Thus, the number of factors of $21600 = {2^5} \times {3^3} \times {5^2}$ will be:

$

\Rightarrow {\text{ No}}{\text{. of factors }} = \left( {5 + 1} \right)\left( {3 + 1} \right)\left( {2 + 1} \right) = 6 \times 4 \times 3 \\

\Rightarrow {\text{ No}}{\text{. of factors }} = 72 \\

$

Recently Updated Pages

Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE