
\[ {\text{Consider the following statements in respect of the function }}f(x) = {x^3} - 1, \\
x \in [ - 1,1] \\
{\text{I}}{\text{. }}f(x){\text{ is increasing in }}[ - 1,1] \\
{\text{II}}f'(x){\text{ has no root in (}} - 1,1]. \\
{\text{Which of the statements given above is/are correct?}} \\
{\text{A}}{\text{. only I}} \\
{\text{B}}{\text{. only II}} \\
{\text{C}}{\text{. Both I and II}} \\
{\text{D}}{\text{. Neither I nor II}} \\
\]
Answer
621.9k+ views
$ {\text{Solution: - }} \\
{\text{To check a function either it is increasing or decreasing we have to double differentiate the function}} \\
{\text{and check the function in their domain either it is increasing or decreasing}} \\
{\text{in this question our function is }}f(x) = {x^3} - 1 \\
{\text{ so let's find the first derivative }}f'(x) = 3{x^2} \\
{\text{Now the second derivative is }}f''(x) = 6x{\text{ , we check the function for }}x \in [ - 1,1] \\
{\text{here }}f''(x) \in [ - 6,6]{\text{ }}\therefore {\text{ the function }}f(x){\text{ is increasing }}{\text{.}} \\
{\text{II}}{\text{. To find the root of }}f'(x){\text{ we have to equate }}f'(x) = 0. \\
\Rightarrow 3{x^2} = 0{\text{ }} \Rightarrow x = 0{\text{ }} \\
{\text{there is one root of }}f'(x){\text{ in ( - 1,1]}}{\text{.}} \\
\therefore {\text{Statement I is correct and II is incorrect }} \\
{\text{Answer is A}}{\text{.}} \\
{\text{Note: - To check a function either it is increasing or decreasing we have to differentiate the function}} \\
{\text{ when first derivative is always positive in the given domain then it is strictly increasing}}{\text{.}} \\
{\text{ }} \\
$
{\text{To check a function either it is increasing or decreasing we have to double differentiate the function}} \\
{\text{and check the function in their domain either it is increasing or decreasing}} \\
{\text{in this question our function is }}f(x) = {x^3} - 1 \\
{\text{ so let's find the first derivative }}f'(x) = 3{x^2} \\
{\text{Now the second derivative is }}f''(x) = 6x{\text{ , we check the function for }}x \in [ - 1,1] \\
{\text{here }}f''(x) \in [ - 6,6]{\text{ }}\therefore {\text{ the function }}f(x){\text{ is increasing }}{\text{.}} \\
{\text{II}}{\text{. To find the root of }}f'(x){\text{ we have to equate }}f'(x) = 0. \\
\Rightarrow 3{x^2} = 0{\text{ }} \Rightarrow x = 0{\text{ }} \\
{\text{there is one root of }}f'(x){\text{ in ( - 1,1]}}{\text{.}} \\
\therefore {\text{Statement I is correct and II is incorrect }} \\
{\text{Answer is A}}{\text{.}} \\
{\text{Note: - To check a function either it is increasing or decreasing we have to differentiate the function}} \\
{\text{ when first derivative is always positive in the given domain then it is strictly increasing}}{\text{.}} \\
{\text{ }} \\
$
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Which cell organelles are present in white blood C class 11 biology CBSE

What is the molecular geometry of BrF4 A square planar class 11 chemistry CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

State the laws of reflection of light

Difference Between Prokaryotic Cells and Eukaryotic Cells

Show that total energy of a freely falling body remains class 11 physics CBSE

