
Consider the following statements:
I. If any two rows or columns of a determinant are identical , then the value of the determinant is zero.
II. If the corresponding rows and columns of a determinant are interchanged , then the value of the determinant does not change.
III. If any two rows or columns of a determinant are interchanged , then the value of the determinant changes in sign. Which of these is/are correct?
$\left( 1 \right)$ I and II
$\left( 2 \right)$ II and III
$\left( 3 \right)$ I , II and III
$\left( 4 \right)$ I and III
Answer
404.1k+ views
Hint: This question is from properties of determinants. Determinant of a matrix is denoted by $\det {\text{A or }}\left| {\text{A}} \right|$ . For a $2 \times 2$ matrix ${\text{A}} = \left( {\begin{array}{*{20}{c}}
a&c \\
b&d
\end{array}} \right)$ , $\left| {\text{A}} \right| = {\text{ad}} - {\text{bc}}$ . For a $3 \times 3$ matrix ${\text{A = }}\left( {\begin{array}{*{20}{c}}
a&d&g \\
b&e&h \\
c&f&i
\end{array}} \right)$ , $\left| {\text{A}} \right| = a\left| {\left( {\begin{array}{*{20}{c}}
e&h \\
f&i
\end{array}} \right)} \right| - d\left| {\left( {\begin{array}{*{20}{c}}
b&h \\
c&i
\end{array}} \right)} \right| + g\left| {\left( {\begin{array}{*{20}{c}}
b&e \\
c&f
\end{array}} \right)} \right|$ ( expanding along row $1$ )which is $\left| {\text{A}} \right| = a\left( {ei - fh} \right) - d\left( {bi - ch} \right) + g\left( {bf - ce} \right)$ .
Complete step-by-step answer:
Statement I : . If any two rows or columns of a determinant are identical or same , then the value of the determinant is zero.
Let $A = \left( {\begin{array}{*{20}{c}}
a&b&c \\
a&b&c \\
x&y&z
\end{array}} \right)$
In the above matrix row $1$ and row $2$ are identical;
For example; $A = \left( {\begin{array}{*{20}{c}}
3&2&3 \\
3&2&3 \\
2&2&3
\end{array}} \right)$
$ \Rightarrow \det {\text{A}} = \left| {\text{A}} \right| = \left| {\left( {\begin{array}{*{20}{c}}
3&2&3 \\
3&2&3 \\
2&2&3
\end{array}} \right)} \right|$
Here, expanding along row $1$ ;
$ \Rightarrow \left| {\text{A}} \right| = 3\left[ {\left( {\begin{array}{*{20}{c}}
2&3 \\
2&3
\end{array}} \right)} \right] - 2\left| {\left( {\begin{array}{*{20}{c}}
3&3 \\
2&3
\end{array}} \right)} \right| + 3\left[ {\left( {\begin{array}{*{20}{c}}
3&2 \\
2&2
\end{array}} \right)} \right]$
$ \Rightarrow \left| {\text{A}} \right| = 3\left( {6 - 6} \right) - 2\left( {9 - 6} \right) + 3\left( {6 - 4} \right)$
$ \Rightarrow \left| {\text{A}} \right| = 0 - 6 + 6$
$ \Rightarrow \left| {\text{A}} \right| = 0$
Therefore, statement I is true .
Statement II. If the corresponding rows and columns of a determinant are interchanged , then the value of the determinant does not change.
$B = \left( {\begin{array}{*{20}{c}}
{{a_{11}}}&{{a_{12}}}&{{a_{13}}} \\
{{a_{21}}}&{{a_{22}}}&{{a_{23}}} \\
{{a_{31}}}&{{a_{32}}}&{{a_{33}}}
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{{a_{11}}}&{{a_{21}}}&{{a_{31}}} \\
{{a_{12}}}&{{a_{22}}}&{{a_{32}}} \\
{{a_{13}}}&{{a_{23}}}&{{a_{33}}}
\end{array}} \right)$ ( rows and columns are interchanged)
${\text{For example ; }}B = \left( {\begin{array}{*{20}{c}}
1&1&{ - 2} \\
2&1&{ - 3} \\
5&3&{ - 9}
\end{array}} \right)$
Now, expanding along row $1$ ;
$ \Rightarrow \det {\text{B}} = \left| {\text{B}} \right| = 1\left[ {\left( {\begin{array}{*{20}{c}}
1&{ - 3} \\
3&{ - 9}
\end{array}} \right)} \right] - 1\left[ {\left( {\begin{array}{*{20}{c}}
2&{ - 3} \\
5&{ - 9}
\end{array}} \right)} \right] - 2\left[ {\left( {\begin{array}{*{20}{c}}
2&1 \\
5&3
\end{array}} \right)} \right]$
$ \Rightarrow \left| {\text{B}} \right| = 1\left( { - 9 + 9} \right) - 1\left( { - 18 + 15} \right) - 2\left( {6 - 5} \right)$
$ \Rightarrow \left| {\text{B}} \right| = 1$
$ \Rightarrow {B^T} = B' = \left( {\begin{array}{*{20}{c}}
1&2&5 \\
1&1&3 \\
{ - 2}&{ - 3}&{ - 9}
\end{array}} \right)$ ( This is transpose of the matrix $B$ )
$ \Rightarrow \det {{\text{B}}^T} = \left| {{{\text{B}}^T}} \right| = 1\left[ {\left( {\begin{array}{*{20}{c}}
1&3 \\
{ - 3}&{ - 9}
\end{array}} \right)} \right] - 2\left[ {\left( {\begin{array}{*{20}{c}}
1&3 \\
{ - 2}&{ - 9}
\end{array}} \right)} \right] + 5\left[ {\left( {\begin{array}{*{20}{c}}
1&1 \\
{ - 2}&{ - 3}
\end{array}} \right)} \right]$
$ \Rightarrow \left| {{B^T}} \right| = 1\left( { - 9 + 9} \right) - 2\left( { - 9 + 6} \right) + 5\left( { - 3 + 2} \right)$
$ \Rightarrow \left| {{B^T}} \right| = 1$
Therefore, the value of the determinant does not change.
In other words, we can say that $\left| B \right| = \left| {{B^T}} \right|$ are equal .
Hence statement II is true.
Statement III : If any two rows or columns of a determinant are interchanged , then the value of the determinant changes in sign.
Let $C = \left( {\begin{array}{*{20}{c}}
2&3&1 \\
8&1&2 \\
3&4&2
\end{array}} \right)$
Here, expanding along row $1$ ;
$ \Rightarrow \left| {\text{C}} \right| = 2\left[ {\left( {\begin{array}{*{20}{c}}
1&2 \\
4&2
\end{array}} \right)} \right] - 3\left[ {\left( {\begin{array}{*{20}{c}}
8&2 \\
3&2
\end{array}} \right)} \right] + 1\left[ {\left( {\begin{array}{*{20}{c}}
8&1 \\
3&4
\end{array}} \right)} \right]$
$ \Rightarrow \left| {\text{C}} \right| = 2\left( { - 6} \right) - 3\left( {10} \right) + 29$
$ \Rightarrow \left| {\text{C}} \right| = - 13$
$ \Rightarrow {R_1} \leftrightarrow {R_2}$ (interchanging row $1$ and row $2$ )
${\text{Let , }}D = \left( {\begin{array}{*{20}{c}}
8&1&2 \\
2&3&1 \\
3&4&2
\end{array}} \right)$
Here, expanding along row $1$ ;
$ \Rightarrow \left| {\text{D}} \right| = 8\left[ {\left( {\begin{array}{*{20}{c}}
3&1 \\
4&2
\end{array}} \right)} \right] - 1\left[ {\left( {\begin{array}{*{20}{c}}
2&1 \\
3&2
\end{array}} \right)} \right] + 2\left[ {\left( {\begin{array}{*{20}{c}}
2&3 \\
3&4
\end{array}} \right)} \right]$
$ \Rightarrow \left| {\text{D}} \right| = 8\left( 2 \right) - 1\left( 1 \right) + 2\left( { - 1} \right)$
$ \Rightarrow \left| {\text{D}} \right| = 13$
$\therefore \left| {\text{C}} \right| = - \left| {\text{D}} \right|$
Therefore, we can notice here that by interchanging two rows the sign of the determinant has changed.
Hence statement III is also true.
So, in conclusion, statements I , II , III all are true.
Therefore, the correct answer for this question is option $\left( 3 \right)$ .
So, the correct answer is “Option 3”.
Note: Some of the other important properties of a determinant are listed as under: $\left( 1 \right)$ If every element of a row or a column of a matrix is multiplied by a constant $k$ , then it’s determinant value is also multiplied by the same constant $k$ . $\left( 2 \right)$ If some or all elements of a row or a column of a matrix are expressed as a sum of two or more terms, then it’s determinant can also be expressed as sum of two or more determinants. $\left( 3 \right)$ The value of the determinant remains same or unchanged if ${R_i} = {R_i} + k{R_j}$ or ${C_i} = {C_i} + k{C_j}$ . Example: Without expanding show that;\[\Delta = \left| {\left( {\begin{array}{*{20}{c}}
{p + q}&{q + r}&{r + p} \\
r&p&q \\
1&1&1
\end{array}} \right)} \right| = 0\] . Let ${R_1} \to {R_1} + {R_2}{\text{ }}\left( {{\text{here }}k = 1} \right)$ then \[\Delta = \left| {\left( {\begin{array}{*{20}{c}}
{p + q + r}&{p + q + r}&{p + q + r} \\
r&p&q \\
1&1&1
\end{array}} \right)} \right| = p + q + r\left| {\left( {\begin{array}{*{20}{c}}
1&1&1 \\
r&p&q \\
1&1&1
\end{array}} \right)} \right| = 0\] (By statement I , two rows are identical, hence the determinant is zero ).
a&c \\
b&d
\end{array}} \right)$ , $\left| {\text{A}} \right| = {\text{ad}} - {\text{bc}}$ . For a $3 \times 3$ matrix ${\text{A = }}\left( {\begin{array}{*{20}{c}}
a&d&g \\
b&e&h \\
c&f&i
\end{array}} \right)$ , $\left| {\text{A}} \right| = a\left| {\left( {\begin{array}{*{20}{c}}
e&h \\
f&i
\end{array}} \right)} \right| - d\left| {\left( {\begin{array}{*{20}{c}}
b&h \\
c&i
\end{array}} \right)} \right| + g\left| {\left( {\begin{array}{*{20}{c}}
b&e \\
c&f
\end{array}} \right)} \right|$ ( expanding along row $1$ )which is $\left| {\text{A}} \right| = a\left( {ei - fh} \right) - d\left( {bi - ch} \right) + g\left( {bf - ce} \right)$ .
Complete step-by-step answer:
Statement I : . If any two rows or columns of a determinant are identical or same , then the value of the determinant is zero.
Let $A = \left( {\begin{array}{*{20}{c}}
a&b&c \\
a&b&c \\
x&y&z
\end{array}} \right)$
In the above matrix row $1$ and row $2$ are identical;
For example; $A = \left( {\begin{array}{*{20}{c}}
3&2&3 \\
3&2&3 \\
2&2&3
\end{array}} \right)$
$ \Rightarrow \det {\text{A}} = \left| {\text{A}} \right| = \left| {\left( {\begin{array}{*{20}{c}}
3&2&3 \\
3&2&3 \\
2&2&3
\end{array}} \right)} \right|$
Here, expanding along row $1$ ;
$ \Rightarrow \left| {\text{A}} \right| = 3\left[ {\left( {\begin{array}{*{20}{c}}
2&3 \\
2&3
\end{array}} \right)} \right] - 2\left| {\left( {\begin{array}{*{20}{c}}
3&3 \\
2&3
\end{array}} \right)} \right| + 3\left[ {\left( {\begin{array}{*{20}{c}}
3&2 \\
2&2
\end{array}} \right)} \right]$
$ \Rightarrow \left| {\text{A}} \right| = 3\left( {6 - 6} \right) - 2\left( {9 - 6} \right) + 3\left( {6 - 4} \right)$
$ \Rightarrow \left| {\text{A}} \right| = 0 - 6 + 6$
$ \Rightarrow \left| {\text{A}} \right| = 0$
Therefore, statement I is true .
Statement II. If the corresponding rows and columns of a determinant are interchanged , then the value of the determinant does not change.
$B = \left( {\begin{array}{*{20}{c}}
{{a_{11}}}&{{a_{12}}}&{{a_{13}}} \\
{{a_{21}}}&{{a_{22}}}&{{a_{23}}} \\
{{a_{31}}}&{{a_{32}}}&{{a_{33}}}
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{{a_{11}}}&{{a_{21}}}&{{a_{31}}} \\
{{a_{12}}}&{{a_{22}}}&{{a_{32}}} \\
{{a_{13}}}&{{a_{23}}}&{{a_{33}}}
\end{array}} \right)$ ( rows and columns are interchanged)
${\text{For example ; }}B = \left( {\begin{array}{*{20}{c}}
1&1&{ - 2} \\
2&1&{ - 3} \\
5&3&{ - 9}
\end{array}} \right)$
Now, expanding along row $1$ ;
$ \Rightarrow \det {\text{B}} = \left| {\text{B}} \right| = 1\left[ {\left( {\begin{array}{*{20}{c}}
1&{ - 3} \\
3&{ - 9}
\end{array}} \right)} \right] - 1\left[ {\left( {\begin{array}{*{20}{c}}
2&{ - 3} \\
5&{ - 9}
\end{array}} \right)} \right] - 2\left[ {\left( {\begin{array}{*{20}{c}}
2&1 \\
5&3
\end{array}} \right)} \right]$
$ \Rightarrow \left| {\text{B}} \right| = 1\left( { - 9 + 9} \right) - 1\left( { - 18 + 15} \right) - 2\left( {6 - 5} \right)$
$ \Rightarrow \left| {\text{B}} \right| = 1$
$ \Rightarrow {B^T} = B' = \left( {\begin{array}{*{20}{c}}
1&2&5 \\
1&1&3 \\
{ - 2}&{ - 3}&{ - 9}
\end{array}} \right)$ ( This is transpose of the matrix $B$ )
$ \Rightarrow \det {{\text{B}}^T} = \left| {{{\text{B}}^T}} \right| = 1\left[ {\left( {\begin{array}{*{20}{c}}
1&3 \\
{ - 3}&{ - 9}
\end{array}} \right)} \right] - 2\left[ {\left( {\begin{array}{*{20}{c}}
1&3 \\
{ - 2}&{ - 9}
\end{array}} \right)} \right] + 5\left[ {\left( {\begin{array}{*{20}{c}}
1&1 \\
{ - 2}&{ - 3}
\end{array}} \right)} \right]$
$ \Rightarrow \left| {{B^T}} \right| = 1\left( { - 9 + 9} \right) - 2\left( { - 9 + 6} \right) + 5\left( { - 3 + 2} \right)$
$ \Rightarrow \left| {{B^T}} \right| = 1$
Therefore, the value of the determinant does not change.
In other words, we can say that $\left| B \right| = \left| {{B^T}} \right|$ are equal .
Hence statement II is true.
Statement III : If any two rows or columns of a determinant are interchanged , then the value of the determinant changes in sign.
Let $C = \left( {\begin{array}{*{20}{c}}
2&3&1 \\
8&1&2 \\
3&4&2
\end{array}} \right)$
Here, expanding along row $1$ ;
$ \Rightarrow \left| {\text{C}} \right| = 2\left[ {\left( {\begin{array}{*{20}{c}}
1&2 \\
4&2
\end{array}} \right)} \right] - 3\left[ {\left( {\begin{array}{*{20}{c}}
8&2 \\
3&2
\end{array}} \right)} \right] + 1\left[ {\left( {\begin{array}{*{20}{c}}
8&1 \\
3&4
\end{array}} \right)} \right]$
$ \Rightarrow \left| {\text{C}} \right| = 2\left( { - 6} \right) - 3\left( {10} \right) + 29$
$ \Rightarrow \left| {\text{C}} \right| = - 13$
$ \Rightarrow {R_1} \leftrightarrow {R_2}$ (interchanging row $1$ and row $2$ )
${\text{Let , }}D = \left( {\begin{array}{*{20}{c}}
8&1&2 \\
2&3&1 \\
3&4&2
\end{array}} \right)$
Here, expanding along row $1$ ;
$ \Rightarrow \left| {\text{D}} \right| = 8\left[ {\left( {\begin{array}{*{20}{c}}
3&1 \\
4&2
\end{array}} \right)} \right] - 1\left[ {\left( {\begin{array}{*{20}{c}}
2&1 \\
3&2
\end{array}} \right)} \right] + 2\left[ {\left( {\begin{array}{*{20}{c}}
2&3 \\
3&4
\end{array}} \right)} \right]$
$ \Rightarrow \left| {\text{D}} \right| = 8\left( 2 \right) - 1\left( 1 \right) + 2\left( { - 1} \right)$
$ \Rightarrow \left| {\text{D}} \right| = 13$
$\therefore \left| {\text{C}} \right| = - \left| {\text{D}} \right|$
Therefore, we can notice here that by interchanging two rows the sign of the determinant has changed.
Hence statement III is also true.
So, in conclusion, statements I , II , III all are true.
Therefore, the correct answer for this question is option $\left( 3 \right)$ .
So, the correct answer is “Option 3”.
Note: Some of the other important properties of a determinant are listed as under: $\left( 1 \right)$ If every element of a row or a column of a matrix is multiplied by a constant $k$ , then it’s determinant value is also multiplied by the same constant $k$ . $\left( 2 \right)$ If some or all elements of a row or a column of a matrix are expressed as a sum of two or more terms, then it’s determinant can also be expressed as sum of two or more determinants. $\left( 3 \right)$ The value of the determinant remains same or unchanged if ${R_i} = {R_i} + k{R_j}$ or ${C_i} = {C_i} + k{C_j}$ . Example: Without expanding show that;\[\Delta = \left| {\left( {\begin{array}{*{20}{c}}
{p + q}&{q + r}&{r + p} \\
r&p&q \\
1&1&1
\end{array}} \right)} \right| = 0\] . Let ${R_1} \to {R_1} + {R_2}{\text{ }}\left( {{\text{here }}k = 1} \right)$ then \[\Delta = \left| {\left( {\begin{array}{*{20}{c}}
{p + q + r}&{p + q + r}&{p + q + r} \\
r&p&q \\
1&1&1
\end{array}} \right)} \right| = p + q + r\left| {\left( {\begin{array}{*{20}{c}}
1&1&1 \\
r&p&q \\
1&1&1
\end{array}} \right)} \right| = 0\] (By statement I , two rows are identical, hence the determinant is zero ).
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
The probability that a leap year will have only 52 class 12 maths CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
