Answer
Verified
424.5k+ views
Hint: Try to apply Hess’s law. Since we need to find the heat of formation of $CO$ try to express the given equations such that on the product side $CO$ molecule is present. Balance the reactions. Reverse any reaction if required. If any reaction is reversed the magnitude of $\Delta {H^ \circ }$ will remain the same , just its sign will be reversed, also if any reaction is divided by any number the$\Delta {H^ \circ }$of the corresponding reaction will be divided by the same. Add the required reactions for obtaining $CO$ on the product side. Add the $\Delta {H^ \circ }$ of the corresponding reactions and obtain the heat of formation of $CO$ .
Complete step-by-step solution:
Hess’s law states that the change in enthalpy of the overall process is equal to the summation of the enthalpy change of the intermediate steps associated with the process.
Now, the formation of $CO$ can be expressed by the equation
$C + \dfrac{1}{2}{O_2} \to CO.............(1)$
The given equations are $:$
$C + {O_2} \to C{O_2};\Delta {H^ \circ } = - xkJ..........(2)$
$2CO + {O_2} \to 2C{O_2};\Delta {H^ \circ } = - ykJ...........(3)$
Reversing equation $(3)$ we get
$2C{O_2} \to 2CO + {O_2};\Delta {H^ \circ } = ykJ..........(4)$
Since the reaction is reversed the magnitude of $\Delta {H^ \circ }$ will remain the same the sign will be reversed.
Dividing equation $(4)$ by $2$ we get
$C{O_2} \to CO + \dfrac{1}{2}{O_2};\Delta {H^ \circ } = \dfrac{y}{2}kJ..........(5)$
Since the equation is divided by two, $\Delta {H^ \circ }$ is also divided by two.
Now adding equations $(2)$ and $(5)$ we get
$C + \dfrac{1}{2}{O_2} \to CO$ which is the desired equation.
So according to Hess’s law we will now add the $\Delta {H^ \circ }$values of the reactions corresponding to $(2)$ and $(5)$ in order to obtain the heat of formation of $CO$ .
Therefore the heat of formation of $CO$ is given by
$\Delta {H^ \circ }_f(CO) = \left( { - x + \dfrac{y}{2}} \right)kJ = \dfrac{{ - 2x + y}}{2}kJ$
Hence the correct answer is (i) $\dfrac{{y - 2x}}{2}kJ$.
Note: You must take care of the sign of the $\Delta {H^ \circ }$ value provided in the equations. Remember to change the sign when you are reversing the given reaction. Also remember to divide the $\Delta {H^ \circ }$ value of a given reaction by the same number with which you are dividing the equation.
Complete step-by-step solution:
Hess’s law states that the change in enthalpy of the overall process is equal to the summation of the enthalpy change of the intermediate steps associated with the process.
Now, the formation of $CO$ can be expressed by the equation
$C + \dfrac{1}{2}{O_2} \to CO.............(1)$
The given equations are $:$
$C + {O_2} \to C{O_2};\Delta {H^ \circ } = - xkJ..........(2)$
$2CO + {O_2} \to 2C{O_2};\Delta {H^ \circ } = - ykJ...........(3)$
Reversing equation $(3)$ we get
$2C{O_2} \to 2CO + {O_2};\Delta {H^ \circ } = ykJ..........(4)$
Since the reaction is reversed the magnitude of $\Delta {H^ \circ }$ will remain the same the sign will be reversed.
Dividing equation $(4)$ by $2$ we get
$C{O_2} \to CO + \dfrac{1}{2}{O_2};\Delta {H^ \circ } = \dfrac{y}{2}kJ..........(5)$
Since the equation is divided by two, $\Delta {H^ \circ }$ is also divided by two.
Now adding equations $(2)$ and $(5)$ we get
$C + \dfrac{1}{2}{O_2} \to CO$ which is the desired equation.
So according to Hess’s law we will now add the $\Delta {H^ \circ }$values of the reactions corresponding to $(2)$ and $(5)$ in order to obtain the heat of formation of $CO$ .
Therefore the heat of formation of $CO$ is given by
$\Delta {H^ \circ }_f(CO) = \left( { - x + \dfrac{y}{2}} \right)kJ = \dfrac{{ - 2x + y}}{2}kJ$
Hence the correct answer is (i) $\dfrac{{y - 2x}}{2}kJ$.
Note: You must take care of the sign of the $\Delta {H^ \circ }$ value provided in the equations. Remember to change the sign when you are reversing the given reaction. Also remember to divide the $\Delta {H^ \circ }$ value of a given reaction by the same number with which you are dividing the equation.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
The male gender of Mare is Horse class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths