Consider the constant function \[f(x)=3\]. Let us try to find its limit as \[x=2\].
Answer
382.2k+ views
Hint: The limit of a function exists only if left hand limit and right hand limit exist and both are equal.
Also, the value of the limit will be equal to the value of the right hand limit and (or) the left hand limit.
We know, the limit of a function exists only if the left hand limit and right hand limit exist and both are equal.
So, first, we will find the left hand limit of the function \[f(x)=3\] at \[x=2\].
We know, the left hand limit of a function \[f(x)\] at \[x=a\] is given as
\[L.H.L=\underset{h\to 0}{\mathop{\lim }}\,f\left( a-h \right)\]
So, left hand limit of the function \[f(x)=3\] at \[x=2\] is given as
\[L.H.L=\underset{h\to 0}{\mathop{\lim }}\,f\left( 2-h \right)=3\][ \[\because \]\[f(x)\] is a constant function, value of a function is 3 for all \[x\in R\]]
Now , we will find the right hand limit of the function \[f(x)=3\] at \[x=2\].
We know the right hand limit of a function \[f(x)\] at \[x=a\] is given as
\[L.H.L=\underset{h\to 0}{\mathop{\lim }}\,f\left( a+h \right)\]
So , right hand limit of the function \[f(x)=3\] at \[x=2\] is given as
\[L.H.L=\underset{h\to 0}{\mathop{\lim }}\,f\left( 2+h \right)=3\]
We can clearly see that both the left hand limit and the right hand limit of the function \[f(x)=3\] exist at \[x=2\].
Also, the left hand limit and the right hand limit of the function \[f(x)=3\] at \[x=2\] are equal.
Since, the value of \[L.H.L=R.H.L\]at \[x=2\], hence, limit of the function \[f(x)=3\] exists at \[x=2\] and the value of limit of the function \[f(x)=3\] at \[x=2\] is \[3\].
Note: The graph of the given function \[f(x)=3\] is a straight line parallel to x-axis as shown in the figure.
From the graph, we can clearly see that whether we approach \[x=2\] from the left or right side, the value of the function is equal to \[3\].
So, the value of left hand limit of the function \[f(x)=3\] at \[x=2\] is equal to \[3\] and the value of right hand limit of the function \[f(x)=3\] at \[x=2\] is equal to \[3\].
Hence, the value of \[\underset{x\to 2}{\mathop{\lim }}\,f\left( x \right)\] is equal to \[3\].
Also, the value of the limit will be equal to the value of the right hand limit and (or) the left hand limit.
We know, the limit of a function exists only if the left hand limit and right hand limit exist and both are equal.
So, first, we will find the left hand limit of the function \[f(x)=3\] at \[x=2\].
We know, the left hand limit of a function \[f(x)\] at \[x=a\] is given as
\[L.H.L=\underset{h\to 0}{\mathop{\lim }}\,f\left( a-h \right)\]
So, left hand limit of the function \[f(x)=3\] at \[x=2\] is given as
\[L.H.L=\underset{h\to 0}{\mathop{\lim }}\,f\left( 2-h \right)=3\][ \[\because \]\[f(x)\] is a constant function, value of a function is 3 for all \[x\in R\]]
Now , we will find the right hand limit of the function \[f(x)=3\] at \[x=2\].
We know the right hand limit of a function \[f(x)\] at \[x=a\] is given as
\[L.H.L=\underset{h\to 0}{\mathop{\lim }}\,f\left( a+h \right)\]
So , right hand limit of the function \[f(x)=3\] at \[x=2\] is given as
\[L.H.L=\underset{h\to 0}{\mathop{\lim }}\,f\left( 2+h \right)=3\]
We can clearly see that both the left hand limit and the right hand limit of the function \[f(x)=3\] exist at \[x=2\].
Also, the left hand limit and the right hand limit of the function \[f(x)=3\] at \[x=2\] are equal.
Since, the value of \[L.H.L=R.H.L\]at \[x=2\], hence, limit of the function \[f(x)=3\] exists at \[x=2\] and the value of limit of the function \[f(x)=3\] at \[x=2\] is \[3\].
Note: The graph of the given function \[f(x)=3\] is a straight line parallel to x-axis as shown in the figure.

From the graph, we can clearly see that whether we approach \[x=2\] from the left or right side, the value of the function is equal to \[3\].
So, the value of left hand limit of the function \[f(x)=3\] at \[x=2\] is equal to \[3\] and the value of right hand limit of the function \[f(x)=3\] at \[x=2\] is equal to \[3\].
Hence, the value of \[\underset{x\to 2}{\mathop{\lim }}\,f\left( x \right)\] is equal to \[3\].
Recently Updated Pages
Which of the following would not be a valid reason class 11 biology CBSE

What is meant by monosporic development of female class 11 biology CBSE

Draw labelled diagram of the following i Gram seed class 11 biology CBSE

Explain with the suitable examples the different types class 11 biology CBSE

How is pinnately compound leaf different from palmately class 11 biology CBSE

Match the following Column I Column I A Chlamydomonas class 11 biology CBSE

Trending doubts
Which country launched the first satellite in space class 11 physics CBSE

Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is the past tense of read class 10 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

What is pollution? How many types of pollution? Define it

Give 10 examples for herbs , shrubs , climbers , creepers

Write a letter to the principal requesting him to grant class 10 english CBSE
