Consider $f:\left\{ 1,2,3 \right\}\to \left\{ a,b,c \right\}$ and $g:\left\{ a,b,c \right\}\to \left\{ apple,ball,cat \right\}$ defined as $f(1)=a,f(2)=b,f(3)=c,g(a)=apple,g(b)=ball,g(c)=cat$ . Show that $f,g,g\circ f$ are invertible. Find ${{f}^{-1}},{{g}^{-1}}$ and ${{\left( g\circ f \right)}^{-1}}$ . Show that ${{\left( g\circ f \right)}^{-1}}={{f}^{-1}}\circ {{g}^{-1}}$ .
Answer
325.5k+ views
Hint: At first we have to check if the functions $f,g$ are one to one and onto or not. A function is invertible only if the function is both one to one and onto.
Complete step-by-step answer:
The function f is defined as:
$f:\left\{ 1,2,3 \right\}\to \left\{ a,b,c \right\}$.
$f(1)=a,f(2)=b,f(3)=c$ .
Here $\left\{ 1,2,3 \right\}$ is the domain of the function f. $\left\{ a,b,c \right\}$ is the codomain of the function f.
We know that a function is said to be one to one if every different element of the domain has different images.
Here image of 1 is a. Image of 2 is b. Image of 3 is c. Therefore, every different element of the domain has a different image. Hence, f is one to one.
We know that a function is said to be onto if for every element of the codomain, we can find out at least one preimage from the domain.
The preimage of a is 1. Preimage of b is 2. Preimage of c is 3.
Therefore, every element of the codomain has a preimage. Hence, f is a onto function.
Therefore, f is both one to one and onto. So, f is invertible.
Similarly, the function g is defined as:
$g:\left\{ a,b,c \right\}\to \left\{ apple,ball,cat \right\}$
$g(a)=apple, g(b)=ball, g(c)=cat$
Here $\left\{ a,b,c \right\}$ is the domain of the function. $\left\{ apple,ball,cat \right\}$ is the codomain of the function.
The function g is one to one as image of a is apple, image of b is ball, image of c is cat. Therefore every element of the domain has a different image.
The function g is onto as preimage of apple is a, preimage of ball is b, preimage of cat is c. Therefore every element of the codomain has one preimage in the domain.
Hence, g is both one to one and onto. So, g is invertible.
Now, $(g\circ f):\left\{ 1,2,3 \right\}\to \left\{ apple,ball,cat \right\}$ is defined as:
As $\left( g\circ f \right)\left( 1 \right)=g\left( f\left( 1 \right) \right)=g\left( a \right)=apple$
$\begin{align}
& (g\circ f)(2)=g\left( f\left( 2 \right) \right)=g(b)=ball \\
& (g\circ f)(3)=g\left( f\left( 3 \right) \right)=g(c)=cat \\
\end{align}$
$g\circ f$ is one to one as every element of the domain $\left\{ 1,2,3 \right\}$ has different image.
$g\circ f$ is onto as every element of the codomain $\left\{ apple,ball,cat \right\}$ has a preimage in the domain.
Therefore $g\circ f$ is invertible.
We know that if a function $f$ maps one element $x$ to $y$, then the inverse function maps the image $y$ to $x$. That is:
$f\left( x \right)=y\Rightarrow {{f}^{-1}}\left( y \right)=x$
Therefore,
$\begin{align}
& f(1)=a\Rightarrow {{f}^{-1}}\left( a \right)=1 \\
& f(2)=b\Rightarrow {{f}^{-1}}\left( b \right)=2 \\
& f(3)=c\Rightarrow {{f}^{-1}}\left( c \right)=3 \\
\end{align}$
Hence,
${{f}^{-1}}:\left\{ a,b,c \right\}\to \left\{ 1,2,3 \right\}$ , such that:
${{f}^{-1}}\left( a \right)=1,{{f}^{-1}}\left( b \right)=2,{{f}^{-1}}\left( c \right)=3$
Similarly,
$\begin{align}
&g\left( a \right)=apple\Rightarrow {{g}^{-1}}\left( apple \right)=a \\
&g\left( b \right)=ball\Rightarrow {{g}^{-1}}\left( ball \right)=b \\
&g\left( c \right)=cat\Rightarrow {{g}^{-1}}\left( cat \right)=c \\
\end{align}$
Therefore,
${{g}^{-1}}:\left\{ apple,ball,cat \right\}\to \left\{ a,b,c \right\}$ , such that:
$\begin{align}
& {{g}^{-1}}(apple)=a \\
& {{g}^{-1}}\left( ball \right)=b \\
& {{g}^{-1}}\left( cat \right)=c \\
\end{align}$
Similarly,
$\begin{align}
& \left( g\circ f \right)\left( 1 \right)=apple\Rightarrow {{\left( g\circ f \right)}^{-1}}\left( apple \right)=1 \\
& \left( g\circ f \right)\left( 2 \right)=ball\Rightarrow {{\left( g\circ f \right)}^{-1}}\left( ball \right)=2 \\
& \left( g\circ f \right)\left( 3 \right)=cat\Rightarrow {{\left( g\circ f \right)}^{-1}}\left( cat \right)=3 \\
\end{align}$
Therefore,
${{\left( g\circ f \right)}^{-1}}:\left\{ apple,ball,cat \right\}\to \left\{ 1,2,3 \right\}$ , such that:
$\begin{align}
& {{\left( g\circ f \right)}^{-1}}\left( apple \right)=1 \\
& {{\left( g\circ f \right)}^{-1}}\left( ball \right)=b \\
& {{\left( g\circ f \right)}^{-1}}\left( cat \right)=c \\
\end{align}$
Now,
$\begin{align}
& \left( {{f}^{-1}}\circ {{g}^{-1}} \right)\left( apple \right)={{f}^{-1}}\left( {{g}^{-1}}\left( apple \right) \right)={{f}^{-1}}\left( a \right)=1 \\
& \left( {{f}^{-1}}\circ {{g}^{-1}} \right)\left( ball \right)={{f}^{-1}}\left( {{g}^{-1}}\left( ball \right) \right)={{f}^{-1}}\left( b \right)=2 \\
& \left( {{f}^{-1}}\circ {{g}^{-1}} \right)\left( cat \right)={{f}^{-1}}\left( {{g}^{-1}}\left( cat \right) \right)={{f}^{-1}}\left( c \right)=3 \\
& \\
\end{align}$
Therefore,
$\begin{align}
& {{\left( g\circ f \right)}^{-1}}\left( apple \right)=\left( {{g}^{-1}}\circ {{f}^{-1}} \right)\left( apple \right) \\
& {{\left( g\circ f \right)}^{-1}}\left( ball \right)=\left( {{g}^{-1}}\circ {{f}^{-1}} \right)\left( ball \right) \\
& {{\left( g\circ f \right)}^{-1}}\left( cat \right)=\left( {{g}^{-1}}\circ {{f}^{-1}} \right)\left( cat \right) \\
\end{align}$
Hence, ${{\left( g\circ f \right)}^{-1}}=\left( {{f}^{-1}}\circ {{g}^{-1}} \right)$
Note: We generally make mistakes to find out the inverse function. Always remember:
$f\left( x \right)=y\Rightarrow {{f}^{-1}}\left( y \right)=x$
Complete step-by-step answer:
The function f is defined as:
$f:\left\{ 1,2,3 \right\}\to \left\{ a,b,c \right\}$.
$f(1)=a,f(2)=b,f(3)=c$ .
Here $\left\{ 1,2,3 \right\}$ is the domain of the function f. $\left\{ a,b,c \right\}$ is the codomain of the function f.
We know that a function is said to be one to one if every different element of the domain has different images.
Here image of 1 is a. Image of 2 is b. Image of 3 is c. Therefore, every different element of the domain has a different image. Hence, f is one to one.
We know that a function is said to be onto if for every element of the codomain, we can find out at least one preimage from the domain.
The preimage of a is 1. Preimage of b is 2. Preimage of c is 3.
Therefore, every element of the codomain has a preimage. Hence, f is a onto function.
Therefore, f is both one to one and onto. So, f is invertible.
Similarly, the function g is defined as:
$g:\left\{ a,b,c \right\}\to \left\{ apple,ball,cat \right\}$
$g(a)=apple, g(b)=ball, g(c)=cat$
Here $\left\{ a,b,c \right\}$ is the domain of the function. $\left\{ apple,ball,cat \right\}$ is the codomain of the function.
The function g is one to one as image of a is apple, image of b is ball, image of c is cat. Therefore every element of the domain has a different image.
The function g is onto as preimage of apple is a, preimage of ball is b, preimage of cat is c. Therefore every element of the codomain has one preimage in the domain.
Hence, g is both one to one and onto. So, g is invertible.
Now, $(g\circ f):\left\{ 1,2,3 \right\}\to \left\{ apple,ball,cat \right\}$ is defined as:
As $\left( g\circ f \right)\left( 1 \right)=g\left( f\left( 1 \right) \right)=g\left( a \right)=apple$
$\begin{align}
& (g\circ f)(2)=g\left( f\left( 2 \right) \right)=g(b)=ball \\
& (g\circ f)(3)=g\left( f\left( 3 \right) \right)=g(c)=cat \\
\end{align}$
$g\circ f$ is one to one as every element of the domain $\left\{ 1,2,3 \right\}$ has different image.
$g\circ f$ is onto as every element of the codomain $\left\{ apple,ball,cat \right\}$ has a preimage in the domain.
Therefore $g\circ f$ is invertible.
We know that if a function $f$ maps one element $x$ to $y$, then the inverse function maps the image $y$ to $x$. That is:
$f\left( x \right)=y\Rightarrow {{f}^{-1}}\left( y \right)=x$
Therefore,
$\begin{align}
& f(1)=a\Rightarrow {{f}^{-1}}\left( a \right)=1 \\
& f(2)=b\Rightarrow {{f}^{-1}}\left( b \right)=2 \\
& f(3)=c\Rightarrow {{f}^{-1}}\left( c \right)=3 \\
\end{align}$
Hence,
${{f}^{-1}}:\left\{ a,b,c \right\}\to \left\{ 1,2,3 \right\}$ , such that:
${{f}^{-1}}\left( a \right)=1,{{f}^{-1}}\left( b \right)=2,{{f}^{-1}}\left( c \right)=3$
Similarly,
$\begin{align}
&g\left( a \right)=apple\Rightarrow {{g}^{-1}}\left( apple \right)=a \\
&g\left( b \right)=ball\Rightarrow {{g}^{-1}}\left( ball \right)=b \\
&g\left( c \right)=cat\Rightarrow {{g}^{-1}}\left( cat \right)=c \\
\end{align}$
Therefore,
${{g}^{-1}}:\left\{ apple,ball,cat \right\}\to \left\{ a,b,c \right\}$ , such that:
$\begin{align}
& {{g}^{-1}}(apple)=a \\
& {{g}^{-1}}\left( ball \right)=b \\
& {{g}^{-1}}\left( cat \right)=c \\
\end{align}$
Similarly,
$\begin{align}
& \left( g\circ f \right)\left( 1 \right)=apple\Rightarrow {{\left( g\circ f \right)}^{-1}}\left( apple \right)=1 \\
& \left( g\circ f \right)\left( 2 \right)=ball\Rightarrow {{\left( g\circ f \right)}^{-1}}\left( ball \right)=2 \\
& \left( g\circ f \right)\left( 3 \right)=cat\Rightarrow {{\left( g\circ f \right)}^{-1}}\left( cat \right)=3 \\
\end{align}$
Therefore,
${{\left( g\circ f \right)}^{-1}}:\left\{ apple,ball,cat \right\}\to \left\{ 1,2,3 \right\}$ , such that:
$\begin{align}
& {{\left( g\circ f \right)}^{-1}}\left( apple \right)=1 \\
& {{\left( g\circ f \right)}^{-1}}\left( ball \right)=b \\
& {{\left( g\circ f \right)}^{-1}}\left( cat \right)=c \\
\end{align}$
Now,
$\begin{align}
& \left( {{f}^{-1}}\circ {{g}^{-1}} \right)\left( apple \right)={{f}^{-1}}\left( {{g}^{-1}}\left( apple \right) \right)={{f}^{-1}}\left( a \right)=1 \\
& \left( {{f}^{-1}}\circ {{g}^{-1}} \right)\left( ball \right)={{f}^{-1}}\left( {{g}^{-1}}\left( ball \right) \right)={{f}^{-1}}\left( b \right)=2 \\
& \left( {{f}^{-1}}\circ {{g}^{-1}} \right)\left( cat \right)={{f}^{-1}}\left( {{g}^{-1}}\left( cat \right) \right)={{f}^{-1}}\left( c \right)=3 \\
& \\
\end{align}$
Therefore,
$\begin{align}
& {{\left( g\circ f \right)}^{-1}}\left( apple \right)=\left( {{g}^{-1}}\circ {{f}^{-1}} \right)\left( apple \right) \\
& {{\left( g\circ f \right)}^{-1}}\left( ball \right)=\left( {{g}^{-1}}\circ {{f}^{-1}} \right)\left( ball \right) \\
& {{\left( g\circ f \right)}^{-1}}\left( cat \right)=\left( {{g}^{-1}}\circ {{f}^{-1}} \right)\left( cat \right) \\
\end{align}$
Hence, ${{\left( g\circ f \right)}^{-1}}=\left( {{f}^{-1}}\circ {{g}^{-1}} \right)$
Note: We generally make mistakes to find out the inverse function. Always remember:
$f\left( x \right)=y\Rightarrow {{f}^{-1}}\left( y \right)=x$
Last updated date: 29th May 2023
•
Total views: 325.5k
•
Views today: 8.83k
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
