
Consider $f:\left\{ 1,2,3 \right\}\to \left\{ a,b,c \right\}$ and $g:\left\{ a,b,c \right\}\to \left\{ apple,ball,cat \right\}$ defined as $f(1)=a,f(2)=b,f(3)=c,g(a)=apple,g(b)=ball,g(c)=cat$ . Show that $f,g,g\circ f$ are invertible. Find ${{f}^{-1}},{{g}^{-1}}$ and ${{\left( g\circ f \right)}^{-1}}$ . Show that ${{\left( g\circ f \right)}^{-1}}={{f}^{-1}}\circ {{g}^{-1}}$ .
Answer
511.2k+ views
Hint: At first we have to check if the functions $f,g$ are one to one and onto or not. A function is invertible only if the function is both one to one and onto.
Complete step-by-step answer:
The function f is defined as:
$f:\left\{ 1,2,3 \right\}\to \left\{ a,b,c \right\}$.
$f(1)=a,f(2)=b,f(3)=c$ .
Here $\left\{ 1,2,3 \right\}$ is the domain of the function f. $\left\{ a,b,c \right\}$ is the codomain of the function f.
We know that a function is said to be one to one if every different element of the domain has different images.
Here image of 1 is a. Image of 2 is b. Image of 3 is c. Therefore, every different element of the domain has a different image. Hence, f is one to one.
We know that a function is said to be onto if for every element of the codomain, we can find out at least one preimage from the domain.
The preimage of a is 1. Preimage of b is 2. Preimage of c is 3.
Therefore, every element of the codomain has a preimage. Hence, f is a onto function.
Therefore, f is both one to one and onto. So, f is invertible.
Similarly, the function g is defined as:
$g:\left\{ a,b,c \right\}\to \left\{ apple,ball,cat \right\}$
$g(a)=apple, g(b)=ball, g(c)=cat$
Here $\left\{ a,b,c \right\}$ is the domain of the function. $\left\{ apple,ball,cat \right\}$ is the codomain of the function.
The function g is one to one as image of a is apple, image of b is ball, image of c is cat. Therefore every element of the domain has a different image.
The function g is onto as preimage of apple is a, preimage of ball is b, preimage of cat is c. Therefore every element of the codomain has one preimage in the domain.
Hence, g is both one to one and onto. So, g is invertible.
Now, $(g\circ f):\left\{ 1,2,3 \right\}\to \left\{ apple,ball,cat \right\}$ is defined as:
As $\left( g\circ f \right)\left( 1 \right)=g\left( f\left( 1 \right) \right)=g\left( a \right)=apple$
$\begin{align}
& (g\circ f)(2)=g\left( f\left( 2 \right) \right)=g(b)=ball \\
& (g\circ f)(3)=g\left( f\left( 3 \right) \right)=g(c)=cat \\
\end{align}$
$g\circ f$ is one to one as every element of the domain $\left\{ 1,2,3 \right\}$ has different image.
$g\circ f$ is onto as every element of the codomain $\left\{ apple,ball,cat \right\}$ has a preimage in the domain.
Therefore $g\circ f$ is invertible.
We know that if a function $f$ maps one element $x$ to $y$, then the inverse function maps the image $y$ to $x$. That is:
$f\left( x \right)=y\Rightarrow {{f}^{-1}}\left( y \right)=x$
Therefore,
$\begin{align}
& f(1)=a\Rightarrow {{f}^{-1}}\left( a \right)=1 \\
& f(2)=b\Rightarrow {{f}^{-1}}\left( b \right)=2 \\
& f(3)=c\Rightarrow {{f}^{-1}}\left( c \right)=3 \\
\end{align}$
Hence,
${{f}^{-1}}:\left\{ a,b,c \right\}\to \left\{ 1,2,3 \right\}$ , such that:
${{f}^{-1}}\left( a \right)=1,{{f}^{-1}}\left( b \right)=2,{{f}^{-1}}\left( c \right)=3$
Similarly,
$\begin{align}
&g\left( a \right)=apple\Rightarrow {{g}^{-1}}\left( apple \right)=a \\
&g\left( b \right)=ball\Rightarrow {{g}^{-1}}\left( ball \right)=b \\
&g\left( c \right)=cat\Rightarrow {{g}^{-1}}\left( cat \right)=c \\
\end{align}$
Therefore,
${{g}^{-1}}:\left\{ apple,ball,cat \right\}\to \left\{ a,b,c \right\}$ , such that:
$\begin{align}
& {{g}^{-1}}(apple)=a \\
& {{g}^{-1}}\left( ball \right)=b \\
& {{g}^{-1}}\left( cat \right)=c \\
\end{align}$
Similarly,
$\begin{align}
& \left( g\circ f \right)\left( 1 \right)=apple\Rightarrow {{\left( g\circ f \right)}^{-1}}\left( apple \right)=1 \\
& \left( g\circ f \right)\left( 2 \right)=ball\Rightarrow {{\left( g\circ f \right)}^{-1}}\left( ball \right)=2 \\
& \left( g\circ f \right)\left( 3 \right)=cat\Rightarrow {{\left( g\circ f \right)}^{-1}}\left( cat \right)=3 \\
\end{align}$
Therefore,
${{\left( g\circ f \right)}^{-1}}:\left\{ apple,ball,cat \right\}\to \left\{ 1,2,3 \right\}$ , such that:
$\begin{align}
& {{\left( g\circ f \right)}^{-1}}\left( apple \right)=1 \\
& {{\left( g\circ f \right)}^{-1}}\left( ball \right)=b \\
& {{\left( g\circ f \right)}^{-1}}\left( cat \right)=c \\
\end{align}$
Now,
$\begin{align}
& \left( {{f}^{-1}}\circ {{g}^{-1}} \right)\left( apple \right)={{f}^{-1}}\left( {{g}^{-1}}\left( apple \right) \right)={{f}^{-1}}\left( a \right)=1 \\
& \left( {{f}^{-1}}\circ {{g}^{-1}} \right)\left( ball \right)={{f}^{-1}}\left( {{g}^{-1}}\left( ball \right) \right)={{f}^{-1}}\left( b \right)=2 \\
& \left( {{f}^{-1}}\circ {{g}^{-1}} \right)\left( cat \right)={{f}^{-1}}\left( {{g}^{-1}}\left( cat \right) \right)={{f}^{-1}}\left( c \right)=3 \\
& \\
\end{align}$
Therefore,
$\begin{align}
& {{\left( g\circ f \right)}^{-1}}\left( apple \right)=\left( {{g}^{-1}}\circ {{f}^{-1}} \right)\left( apple \right) \\
& {{\left( g\circ f \right)}^{-1}}\left( ball \right)=\left( {{g}^{-1}}\circ {{f}^{-1}} \right)\left( ball \right) \\
& {{\left( g\circ f \right)}^{-1}}\left( cat \right)=\left( {{g}^{-1}}\circ {{f}^{-1}} \right)\left( cat \right) \\
\end{align}$
Hence, ${{\left( g\circ f \right)}^{-1}}=\left( {{f}^{-1}}\circ {{g}^{-1}} \right)$
Note: We generally make mistakes to find out the inverse function. Always remember:
$f\left( x \right)=y\Rightarrow {{f}^{-1}}\left( y \right)=x$
Complete step-by-step answer:
The function f is defined as:
$f:\left\{ 1,2,3 \right\}\to \left\{ a,b,c \right\}$.
$f(1)=a,f(2)=b,f(3)=c$ .
Here $\left\{ 1,2,3 \right\}$ is the domain of the function f. $\left\{ a,b,c \right\}$ is the codomain of the function f.
We know that a function is said to be one to one if every different element of the domain has different images.
Here image of 1 is a. Image of 2 is b. Image of 3 is c. Therefore, every different element of the domain has a different image. Hence, f is one to one.
We know that a function is said to be onto if for every element of the codomain, we can find out at least one preimage from the domain.
The preimage of a is 1. Preimage of b is 2. Preimage of c is 3.
Therefore, every element of the codomain has a preimage. Hence, f is a onto function.
Therefore, f is both one to one and onto. So, f is invertible.
Similarly, the function g is defined as:
$g:\left\{ a,b,c \right\}\to \left\{ apple,ball,cat \right\}$
$g(a)=apple, g(b)=ball, g(c)=cat$
Here $\left\{ a,b,c \right\}$ is the domain of the function. $\left\{ apple,ball,cat \right\}$ is the codomain of the function.
The function g is one to one as image of a is apple, image of b is ball, image of c is cat. Therefore every element of the domain has a different image.
The function g is onto as preimage of apple is a, preimage of ball is b, preimage of cat is c. Therefore every element of the codomain has one preimage in the domain.
Hence, g is both one to one and onto. So, g is invertible.
Now, $(g\circ f):\left\{ 1,2,3 \right\}\to \left\{ apple,ball,cat \right\}$ is defined as:
As $\left( g\circ f \right)\left( 1 \right)=g\left( f\left( 1 \right) \right)=g\left( a \right)=apple$
$\begin{align}
& (g\circ f)(2)=g\left( f\left( 2 \right) \right)=g(b)=ball \\
& (g\circ f)(3)=g\left( f\left( 3 \right) \right)=g(c)=cat \\
\end{align}$
$g\circ f$ is one to one as every element of the domain $\left\{ 1,2,3 \right\}$ has different image.
$g\circ f$ is onto as every element of the codomain $\left\{ apple,ball,cat \right\}$ has a preimage in the domain.
Therefore $g\circ f$ is invertible.
We know that if a function $f$ maps one element $x$ to $y$, then the inverse function maps the image $y$ to $x$. That is:
$f\left( x \right)=y\Rightarrow {{f}^{-1}}\left( y \right)=x$
Therefore,
$\begin{align}
& f(1)=a\Rightarrow {{f}^{-1}}\left( a \right)=1 \\
& f(2)=b\Rightarrow {{f}^{-1}}\left( b \right)=2 \\
& f(3)=c\Rightarrow {{f}^{-1}}\left( c \right)=3 \\
\end{align}$
Hence,
${{f}^{-1}}:\left\{ a,b,c \right\}\to \left\{ 1,2,3 \right\}$ , such that:
${{f}^{-1}}\left( a \right)=1,{{f}^{-1}}\left( b \right)=2,{{f}^{-1}}\left( c \right)=3$
Similarly,
$\begin{align}
&g\left( a \right)=apple\Rightarrow {{g}^{-1}}\left( apple \right)=a \\
&g\left( b \right)=ball\Rightarrow {{g}^{-1}}\left( ball \right)=b \\
&g\left( c \right)=cat\Rightarrow {{g}^{-1}}\left( cat \right)=c \\
\end{align}$
Therefore,
${{g}^{-1}}:\left\{ apple,ball,cat \right\}\to \left\{ a,b,c \right\}$ , such that:
$\begin{align}
& {{g}^{-1}}(apple)=a \\
& {{g}^{-1}}\left( ball \right)=b \\
& {{g}^{-1}}\left( cat \right)=c \\
\end{align}$
Similarly,
$\begin{align}
& \left( g\circ f \right)\left( 1 \right)=apple\Rightarrow {{\left( g\circ f \right)}^{-1}}\left( apple \right)=1 \\
& \left( g\circ f \right)\left( 2 \right)=ball\Rightarrow {{\left( g\circ f \right)}^{-1}}\left( ball \right)=2 \\
& \left( g\circ f \right)\left( 3 \right)=cat\Rightarrow {{\left( g\circ f \right)}^{-1}}\left( cat \right)=3 \\
\end{align}$
Therefore,
${{\left( g\circ f \right)}^{-1}}:\left\{ apple,ball,cat \right\}\to \left\{ 1,2,3 \right\}$ , such that:
$\begin{align}
& {{\left( g\circ f \right)}^{-1}}\left( apple \right)=1 \\
& {{\left( g\circ f \right)}^{-1}}\left( ball \right)=b \\
& {{\left( g\circ f \right)}^{-1}}\left( cat \right)=c \\
\end{align}$
Now,
$\begin{align}
& \left( {{f}^{-1}}\circ {{g}^{-1}} \right)\left( apple \right)={{f}^{-1}}\left( {{g}^{-1}}\left( apple \right) \right)={{f}^{-1}}\left( a \right)=1 \\
& \left( {{f}^{-1}}\circ {{g}^{-1}} \right)\left( ball \right)={{f}^{-1}}\left( {{g}^{-1}}\left( ball \right) \right)={{f}^{-1}}\left( b \right)=2 \\
& \left( {{f}^{-1}}\circ {{g}^{-1}} \right)\left( cat \right)={{f}^{-1}}\left( {{g}^{-1}}\left( cat \right) \right)={{f}^{-1}}\left( c \right)=3 \\
& \\
\end{align}$
Therefore,
$\begin{align}
& {{\left( g\circ f \right)}^{-1}}\left( apple \right)=\left( {{g}^{-1}}\circ {{f}^{-1}} \right)\left( apple \right) \\
& {{\left( g\circ f \right)}^{-1}}\left( ball \right)=\left( {{g}^{-1}}\circ {{f}^{-1}} \right)\left( ball \right) \\
& {{\left( g\circ f \right)}^{-1}}\left( cat \right)=\left( {{g}^{-1}}\circ {{f}^{-1}} \right)\left( cat \right) \\
\end{align}$
Hence, ${{\left( g\circ f \right)}^{-1}}=\left( {{f}^{-1}}\circ {{g}^{-1}} \right)$
Note: We generally make mistakes to find out the inverse function. Always remember:
$f\left( x \right)=y\Rightarrow {{f}^{-1}}\left( y \right)=x$
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Express the following as a fraction and simplify a class 7 maths CBSE

The length and width of a rectangle are in ratio of class 7 maths CBSE

The ratio of the income to the expenditure of a family class 7 maths CBSE

How do you write 025 million in scientific notatio class 7 maths CBSE

How do you convert 295 meters per second to kilometers class 7 maths CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

Write down 5 differences between Ntype and Ptype s class 11 physics CBSE
