Compute $P\left( A|B \right)$, if $P\left( B \right)=0.25$ and $P\left( A\cap B \right)=0.18$.
Answer
Verified
507.9k+ views
Hint: In probability, we have a formula $P\left( A|B \right)=\dfrac{P\left( A\cap B \right)}{P\left( B \right)}$. This formula can be used to solve this question.
Before proceeding with the question, we must know all those formulas of probability that can be used to solve this question. There is only one formula which can be used to solve this question. That formula is,
$P\left( A|B \right)=\dfrac{P\left( A\cap B \right)}{P\left( B \right)}..............\left( 1 \right)$
Here, $A$ and $B$ are the two mutually exclusive events and $P\left( A|B \right)$ represents the probability of event $A$ given that the event $B$ will also take place. $P\left( A\cap B \right)$ represents the probability that both the events will occur simultaneously.
In this question, we are given some information on the probability related to event $A$ and event $B$. We are given,
$P\left( B \right)=0.25$
$P\left( A\cap B \right)=0.18$
In the question, we are required to find the probability $P\left( A|B \right)$. It can be seen from equation $\left( 1 \right)$ that we require $P\left( B \right)$ and $P\left( A\cap B \right)$ to find the value of $P\left( A|B \right)$. In this question, we are given both $P\left( B \right)$ and $P\left( A\cap B \right)$. So, substituting $P\left( B \right)=0.25$ and $P\left( A\cap B \right)=0.18$ in equation $\left( 1 \right)$, we get,
$\begin{align}
& P\left( A|B \right)=\dfrac{0.18}{0.25} \\
& \Rightarrow P\left( A|B \right)=0.72 \\
\end{align}$
So, the value of $P\left( A|B \right)$ is equal to $0.72$.
Note: There is a possibility that one make commit a mistake while using the formula to find $P\left( A|B \right)$ i.e. $P\left( A|B \right)=\dfrac{P\left( A\cap B \right)}{P\left( B \right)}$. Sometimes instead of using the formula $P\left( A|B \right)=\dfrac{P\left( A\cap B \right)}{P\left( B \right)}$, we use the formula $P\left( A|B \right)=\dfrac{P\left( A\cap B \right)}{P\left( A \right)}$. So, instead of substituting the value of $P\left( B \right)$, we find the value of $P\left( A \right)$ by using the formula $P\left( A \right)=1-P\left( B \right)$ and substitute this value of $P\left( A \right)$ in the formula $P\left( A|B \right)=\dfrac{P\left( A\cap B \right)}{P\left( B \right)}$. This mistake may lead us to the incorrect value of $P\left( A|B \right)$ and eventually, we end up marking the incorrect option if the question is a multiple choice question or give incorrect answers if the question is a subjective one.
Before proceeding with the question, we must know all those formulas of probability that can be used to solve this question. There is only one formula which can be used to solve this question. That formula is,
$P\left( A|B \right)=\dfrac{P\left( A\cap B \right)}{P\left( B \right)}..............\left( 1 \right)$
Here, $A$ and $B$ are the two mutually exclusive events and $P\left( A|B \right)$ represents the probability of event $A$ given that the event $B$ will also take place. $P\left( A\cap B \right)$ represents the probability that both the events will occur simultaneously.
In this question, we are given some information on the probability related to event $A$ and event $B$. We are given,
$P\left( B \right)=0.25$
$P\left( A\cap B \right)=0.18$
In the question, we are required to find the probability $P\left( A|B \right)$. It can be seen from equation $\left( 1 \right)$ that we require $P\left( B \right)$ and $P\left( A\cap B \right)$ to find the value of $P\left( A|B \right)$. In this question, we are given both $P\left( B \right)$ and $P\left( A\cap B \right)$. So, substituting $P\left( B \right)=0.25$ and $P\left( A\cap B \right)=0.18$ in equation $\left( 1 \right)$, we get,
$\begin{align}
& P\left( A|B \right)=\dfrac{0.18}{0.25} \\
& \Rightarrow P\left( A|B \right)=0.72 \\
\end{align}$
So, the value of $P\left( A|B \right)$ is equal to $0.72$.
Note: There is a possibility that one make commit a mistake while using the formula to find $P\left( A|B \right)$ i.e. $P\left( A|B \right)=\dfrac{P\left( A\cap B \right)}{P\left( B \right)}$. Sometimes instead of using the formula $P\left( A|B \right)=\dfrac{P\left( A\cap B \right)}{P\left( B \right)}$, we use the formula $P\left( A|B \right)=\dfrac{P\left( A\cap B \right)}{P\left( A \right)}$. So, instead of substituting the value of $P\left( B \right)$, we find the value of $P\left( A \right)$ by using the formula $P\left( A \right)=1-P\left( B \right)$ and substitute this value of $P\left( A \right)$ in the formula $P\left( A|B \right)=\dfrac{P\left( A\cap B \right)}{P\left( B \right)}$. This mistake may lead us to the incorrect value of $P\left( A|B \right)$ and eventually, we end up marking the incorrect option if the question is a multiple choice question or give incorrect answers if the question is a subjective one.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE
Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE
With reference to graphite and diamond which of the class 11 chemistry CBSE
A certain household has consumed 250 units of energy class 11 physics CBSE
The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE
What is the formula mass of the iodine molecule class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
In China rose the flowers are A Zygomorphic epigynous class 11 biology CBSE
What is Environment class 11 chemistry CBSE
Nucleolus is present in which part of the cell class 11 biology CBSE