Answer
Verified
391.2k+ views
Hint: This question is based on a combination of resistors, there are two types of combination Series and parallel. A circuit is said to be connected in series when the same amount of current flows through the resistors. And A circuit is said to be connected in parallel when the voltage is the same across the resistors.
Formula Used: \[R{}_{eq} = \,R{}_1 + {R_2} + {R_{3.........}}\] (for series) and \[R{}_{eq} = \,\dfrac{1}{{{R_1}}} + \dfrac{1}{{{R_2}}} + \dfrac{1}{{{R_3}}}........\] (for parallel).
Complete step-by-step solution:
To get an equivalent resistance of \[6\Omega \], we have to use both parallel and series combinations in the circuit.
First, the two resistors are connected in parallel combination to obtain equivalent resistance of \[2\Omega \]
Then the combined resistance (of \[2\Omega \]) in series this will give total resistance equal to \[6\Omega \]
That is,
\[ R{}_{eq} = \,\dfrac{1}{4} + \dfrac{1}{4} \\
\Rightarrow \dfrac{2}{4} = \dfrac{1}{2} \\
\Rightarrow {R_{eq}} = 2\,\Omega \]
Now this equivalent resistance of \[2\Omega \] is connected in series with the third \[4\Omega \],
\[ {R_{eq}} = 2\,\Omega + 4\,\Omega \\
{R_{eq}} = 6\,\Omega \]
When we draw a diagram of this, we get,
That is, for the two resistors in parallel the resistance is given as \[2\Omega \] and this is added with the resistance of the third resistor in the series as \[6\Omega \].
Note: Always remember that in series combination equivalent resistance comes out to be more than magnitude of single component resistor and in parallel equivalent resistance comes out to be less than that of magnitude of single component resistor.
Formula Used: \[R{}_{eq} = \,R{}_1 + {R_2} + {R_{3.........}}\] (for series) and \[R{}_{eq} = \,\dfrac{1}{{{R_1}}} + \dfrac{1}{{{R_2}}} + \dfrac{1}{{{R_3}}}........\] (for parallel).
Complete step-by-step solution:
To get an equivalent resistance of \[6\Omega \], we have to use both parallel and series combinations in the circuit.
First, the two resistors are connected in parallel combination to obtain equivalent resistance of \[2\Omega \]
Then the combined resistance (of \[2\Omega \]) in series this will give total resistance equal to \[6\Omega \]
That is,
\[ R{}_{eq} = \,\dfrac{1}{4} + \dfrac{1}{4} \\
\Rightarrow \dfrac{2}{4} = \dfrac{1}{2} \\
\Rightarrow {R_{eq}} = 2\,\Omega \]
Now this equivalent resistance of \[2\Omega \] is connected in series with the third \[4\Omega \],
\[ {R_{eq}} = 2\,\Omega + 4\,\Omega \\
{R_{eq}} = 6\,\Omega \]
When we draw a diagram of this, we get,
That is, for the two resistors in parallel the resistance is given as \[2\Omega \] and this is added with the resistance of the third resistor in the series as \[6\Omega \].
Note: Always remember that in series combination equivalent resistance comes out to be more than magnitude of single component resistor and in parallel equivalent resistance comes out to be less than that of magnitude of single component resistor.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE