
What is \[C\left( 47,4 \right)+C\left( 51,3 \right)+C\left( 50,3 \right)+C\left( 49,3 \right)+C\left( 48,3 \right)+C\left( 47,3 \right)\] equal to?
A. $C\left( 47,4 \right)$
B. $C\left( 52,5 \right)$
C. $C\left( 52,4 \right)$
D. $C\left( 47,5 \right)$
Answer
604.2k+ views
Hint: C(n, r) is the notation used for ${}^{n}{{C}_{r}}$.
Calculate C(47, 4) + C(47, 3) using $''{}^{n}{{C}_{r}}+{}^{n}{{C}_{r-1}}={}^{n+1}{{C}_{r}}''$ and then using the same identity add the obtained with C(49, 3) and using the same identity three more times obtain the required value of
Complete step-by-step answer:
\[{}^{47}{{C}_{4}}+{}^{51}{{C}_{3}}+{}^{50}{{C}_{3}}+{}^{49}{{C}_{3}}+{}^{48}{{C}_{3}}+{}^{47}{{C}_{3}}\].
According to question, we have to find the value of \[C\left( 47,4 \right)+C\left( 51,3 \right)+C\left( 50,3 \right)+C\left( 49,3 \right)+C\left( 48,3 \right)+C\left( 47,3 \right)\]
C(n, r) is the notation used for ${}^{n}{{C}_{r}}$.
So, we have to find the value of \[{}^{47}{{C}_{4}}+{}^{51}{{C}_{3}}+{}^{50}{{C}_{3}}+{}^{49}{{C}_{3}}+{}^{48}{{C}_{3}}+{}^{47}{{C}_{3}}\]
Rearranging the terms, we will get,
\[{}^{47}{{C}_{4}}+{}^{51}{{C}_{3}}+{}^{50}{{C}_{3}}+{}^{49}{{C}_{3}}+{}^{48}{{C}_{3}}+{}^{47}{{C}_{3}}={}^{51}{{C}_{3}}+{}^{50}{{C}_{3}}+{}^{49}{{C}_{3}}+\left( {}^{47}{{C}_{3}}+{}^{47}{{C}_{4}} \right)+{}^{48}{{C}_{3}}\]
We know that $''{}^{n}{{C}_{r}}+{}^{n}{{C}_{r-1}}={}^{n+1}{{C}_{r}}''$
Putting n = 47 and r = 4,
${}^{47}{{C}_{4}}+{}^{47}{{C}_{3}}={}^{48}{{C}_{4}}$
Replacing $''{}^{47}{{C}_{4}}+{}^{47}{{C}_{3}}''\ with\ ''{}^{48}{{C}_{4}}''$, we will get,
\[{}^{47}{{C}_{4}}+{}^{51}{{C}_{3}}+{}^{50}{{C}_{3}}+{}^{49}{{C}_{3}}+{}^{48}{{C}_{3}}+{}^{47}{{C}_{3}}={}^{51}{{C}_{3}}+{}^{50}{{C}_{3}}+{}^{49}{{C}_{3}}+{}^{48}{{C}_{4}}+{}^{48}{{C}_{3}}\]
Again, we will apply $''{}^{n}{{C}_{r}}+{}^{n}{{C}_{r-1}}={}^{n+1}{{C}_{r}}''$ for ${}^{48}{{C}_{3}}+{}^{48}{{C}_{4}}$.
Putting n = 48, r = 4 in the above formula, we will get,
${}^{48}{{C}_{3}}+{}^{48}{{C}_{4}}={}^{49}{{C}_{4}}$
On putting $''{}^{48}{{C}_{3}}+{}^{48}{{C}_{4}}={}^{49}{{C}_{4}}''$in above equation, we will get,
\[{}^{47}{{C}_{4}}+{}^{51}{{C}_{3}}+{}^{50}{{C}_{3}}+{}^{49}{{C}_{3}}+{}^{48}{{C}_{3}}+{}^{47}{{C}_{3}}={}^{51}{{C}_{3}}+{}^{50}{{C}_{3}}+{}^{49}{{C}_{3}}+{}^{49}{{C}_{4}}\]
Again, we will apply the same formula for ${}^{49}{{C}_{3}}+{}^{49}{{C}_{4}}$.
Putting n = 49, r = 4 in the formula $''{}^{n}{{C}_{r}}+{}^{n}{{C}_{r-1}}={}^{n+1}{{C}_{r}}''$we will get,
\[{}^{47}{{C}_{4}}+{}^{51}{{C}_{3}}+{}^{50}{{C}_{3}}+{}^{49}{{C}_{3}}+{}^{48}{{C}_{3}}+{}^{47}{{C}_{3}}={}^{51}{{C}_{3}}+{}^{50}{{C}_{3}}+{}^{50}{{C}_{4}}\]
Again, we will apply the same formula for ${}^{50}{{C}_{3}}+{}^{50}{{C}_{4}}$.
Putting n = 50, r = 4 in the formula $''{}^{n}{{C}_{r}}+{}^{n}{{C}_{r-1}}={}^{n+1}{{C}_{r}}''$we will get,
\[{}^{50}{{C}_{4}}+{}^{50}{{C}_{3}}={}^{51}{{C}_{4}}\]
Now, replacing \[{}^{50}{{C}_{4}}+{}^{50}{{C}_{3}}\ with\ {}^{51}{{C}_{4}}\] in above equation, we will get,
\[{}^{47}{{C}_{4}}+{}^{51}{{C}_{3}}+{}^{50}{{C}_{3}}+{}^{49}{{C}_{3}}+{}^{48}{{C}_{3}}+{}^{47}{{C}_{3}}={}^{51}{{C}_{3}}+{}^{51}{{C}_{4}}\]
Now, we will apply the same formula one more time for \[{}^{51}{{C}_{3}}+{}^{51}{{C}_{4}}\]. Putting n = 51, r = 4 in the formula $''{}^{n}{{C}_{r}}+{}^{n}{{C}_{r-1}}={}^{n+1}{{C}_{r}}''$we will get,
\[{}^{51}{{C}_{4}}+{}^{51}{{C}_{3}}={}^{52}{{C}_{4}}\]
Now, replacing \[{}^{51}{{C}_{4}}+{}^{51}{{C}_{3}}\ with\ {}^{52}{{C}_{4}}\] in above equation, we will get,
\[{}^{47}{{C}_{4}}+{}^{51}{{C}_{3}}+{}^{50}{{C}_{3}}+{}^{49}{{C}_{3}}+{}^{48}{{C}_{3}}+{}^{47}{{C}_{3}}={}^{52}{{C}_{4}}\]
Hence, the required value of \[{}^{47}{{C}_{4}}+{}^{51}{{C}_{3}}+{}^{50}{{C}_{3}}+{}^{49}{{C}_{3}}+{}^{48}{{C}_{3}}+{}^{47}{{C}_{3}}\ is{}^{52}{{C}_{4}}\] and we can write \[{}^{52}{{C}_{4}}=C\left( 52,4 \right)\].
Option (C) is the correct answer.
Note:Memorize the identity of binomial theorem used in the solution, $''{}^{n}{{C}_{r}}+{}^{n}{{C}_{r-1}}={}^{n+1}{{C}_{r}}''$. We can prove this identity in the following ways:
$LHS={}^{n}{{C}_{r}}+{}^{n}{{C}_{r-1}}$
We know ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$
$\Rightarrow LHS=\dfrac{n!}{r!\left( n-r \right)!}+\dfrac{n!}{\left( r-1 \right)!\left( n-r+1 \right)!}$
Taking $n!$ common, we will get,
$\Rightarrow LHS=n!\left[ \dfrac{1}{\left( n-r \right)!r!}+\dfrac{1}{\left( n-r+1 \right)!\left( r-1 \right)!} \right]$
Taking $\dfrac{1}{\left( r-1 \right)!}$ common, we get,
$\Rightarrow LHS=\dfrac{n!}{\left( r-1 \right)!}\left[ \dfrac{1}{\left( n-r \right)!r!}+\dfrac{1}{\left( n-r+1 \right)!} \right]$
We know, $n!=n\left( n-1 \right)!,\ so\ \left( n-r+1 \right)!=\left( n-r+1 \right)\left( n-r \right)!$
$\Rightarrow LHS=\dfrac{n!}{\left( r-1 \right)!}\left[ \dfrac{1}{r\left( n-r \right)!}+\dfrac{1}{\left( n-r+1 \right)\left( n-r \right)!} \right]$
Taking $\dfrac{1}{\left( n-r \right)!}$ common, we will get,
$\Rightarrow LHS=\dfrac{n!}{\left( r-1 \right)!\left( n-r \right)!}\left[ \dfrac{1}{r}+\dfrac{1}{n-r+1} \right]$
Taking LCM and adding, we will get,
$\begin{align}
& \Rightarrow LHS=\dfrac{n!}{\left( r-1 \right)!\left( n-r \right)!}\left[ \dfrac{n-{r}+1+{r}}{r\left( n-r+1 \right)} \right] \\
& \Rightarrow LHS=\dfrac{n!}{\left( r-1 \right)!\left( n-r \right)!}\left[ \dfrac{n+1}{r\left( n-r+1 \right)} \right] \\
& \Rightarrow LHS=\dfrac{\left( n+1 \right)n!}{\left( r-1 \right)!\left( n-r+1 \right)\left( n-r \right)!} \\
\end{align}$
We know,
$\begin{align}
& \left( n+1 \right)\times n!=\left( n+1 \right)! \\
& \Rightarrow r\left( r-1 \right)!=r!\ and \\
& \left( n-r+1 \right)\left( n-r \right)!=\left( n-r+1 \right)! \\
\end{align}$
Thus, we will get,
\[\begin{align}
& LHS=\dfrac{\left( n+1 \right)!}{r!\left[ \left( n+1 \right)-r \right]!} \\
& \Rightarrow LHS={}^{n+1}{{C}_{r}} \\
& \Rightarrow LHS=RHS \\
\end{align}\]
Thus, we have proved that ${}^{n}{{C}_{r}}+{}^{n}{{C}_{r-1}}={}^{n+1}{{C}_{r}}$.
Calculate C(47, 4) + C(47, 3) using $''{}^{n}{{C}_{r}}+{}^{n}{{C}_{r-1}}={}^{n+1}{{C}_{r}}''$ and then using the same identity add the obtained with C(49, 3) and using the same identity three more times obtain the required value of
Complete step-by-step answer:
\[{}^{47}{{C}_{4}}+{}^{51}{{C}_{3}}+{}^{50}{{C}_{3}}+{}^{49}{{C}_{3}}+{}^{48}{{C}_{3}}+{}^{47}{{C}_{3}}\].
According to question, we have to find the value of \[C\left( 47,4 \right)+C\left( 51,3 \right)+C\left( 50,3 \right)+C\left( 49,3 \right)+C\left( 48,3 \right)+C\left( 47,3 \right)\]
C(n, r) is the notation used for ${}^{n}{{C}_{r}}$.
So, we have to find the value of \[{}^{47}{{C}_{4}}+{}^{51}{{C}_{3}}+{}^{50}{{C}_{3}}+{}^{49}{{C}_{3}}+{}^{48}{{C}_{3}}+{}^{47}{{C}_{3}}\]
Rearranging the terms, we will get,
\[{}^{47}{{C}_{4}}+{}^{51}{{C}_{3}}+{}^{50}{{C}_{3}}+{}^{49}{{C}_{3}}+{}^{48}{{C}_{3}}+{}^{47}{{C}_{3}}={}^{51}{{C}_{3}}+{}^{50}{{C}_{3}}+{}^{49}{{C}_{3}}+\left( {}^{47}{{C}_{3}}+{}^{47}{{C}_{4}} \right)+{}^{48}{{C}_{3}}\]
We know that $''{}^{n}{{C}_{r}}+{}^{n}{{C}_{r-1}}={}^{n+1}{{C}_{r}}''$
Putting n = 47 and r = 4,
${}^{47}{{C}_{4}}+{}^{47}{{C}_{3}}={}^{48}{{C}_{4}}$
Replacing $''{}^{47}{{C}_{4}}+{}^{47}{{C}_{3}}''\ with\ ''{}^{48}{{C}_{4}}''$, we will get,
\[{}^{47}{{C}_{4}}+{}^{51}{{C}_{3}}+{}^{50}{{C}_{3}}+{}^{49}{{C}_{3}}+{}^{48}{{C}_{3}}+{}^{47}{{C}_{3}}={}^{51}{{C}_{3}}+{}^{50}{{C}_{3}}+{}^{49}{{C}_{3}}+{}^{48}{{C}_{4}}+{}^{48}{{C}_{3}}\]
Again, we will apply $''{}^{n}{{C}_{r}}+{}^{n}{{C}_{r-1}}={}^{n+1}{{C}_{r}}''$ for ${}^{48}{{C}_{3}}+{}^{48}{{C}_{4}}$.
Putting n = 48, r = 4 in the above formula, we will get,
${}^{48}{{C}_{3}}+{}^{48}{{C}_{4}}={}^{49}{{C}_{4}}$
On putting $''{}^{48}{{C}_{3}}+{}^{48}{{C}_{4}}={}^{49}{{C}_{4}}''$in above equation, we will get,
\[{}^{47}{{C}_{4}}+{}^{51}{{C}_{3}}+{}^{50}{{C}_{3}}+{}^{49}{{C}_{3}}+{}^{48}{{C}_{3}}+{}^{47}{{C}_{3}}={}^{51}{{C}_{3}}+{}^{50}{{C}_{3}}+{}^{49}{{C}_{3}}+{}^{49}{{C}_{4}}\]
Again, we will apply the same formula for ${}^{49}{{C}_{3}}+{}^{49}{{C}_{4}}$.
Putting n = 49, r = 4 in the formula $''{}^{n}{{C}_{r}}+{}^{n}{{C}_{r-1}}={}^{n+1}{{C}_{r}}''$we will get,
\[{}^{47}{{C}_{4}}+{}^{51}{{C}_{3}}+{}^{50}{{C}_{3}}+{}^{49}{{C}_{3}}+{}^{48}{{C}_{3}}+{}^{47}{{C}_{3}}={}^{51}{{C}_{3}}+{}^{50}{{C}_{3}}+{}^{50}{{C}_{4}}\]
Again, we will apply the same formula for ${}^{50}{{C}_{3}}+{}^{50}{{C}_{4}}$.
Putting n = 50, r = 4 in the formula $''{}^{n}{{C}_{r}}+{}^{n}{{C}_{r-1}}={}^{n+1}{{C}_{r}}''$we will get,
\[{}^{50}{{C}_{4}}+{}^{50}{{C}_{3}}={}^{51}{{C}_{4}}\]
Now, replacing \[{}^{50}{{C}_{4}}+{}^{50}{{C}_{3}}\ with\ {}^{51}{{C}_{4}}\] in above equation, we will get,
\[{}^{47}{{C}_{4}}+{}^{51}{{C}_{3}}+{}^{50}{{C}_{3}}+{}^{49}{{C}_{3}}+{}^{48}{{C}_{3}}+{}^{47}{{C}_{3}}={}^{51}{{C}_{3}}+{}^{51}{{C}_{4}}\]
Now, we will apply the same formula one more time for \[{}^{51}{{C}_{3}}+{}^{51}{{C}_{4}}\]. Putting n = 51, r = 4 in the formula $''{}^{n}{{C}_{r}}+{}^{n}{{C}_{r-1}}={}^{n+1}{{C}_{r}}''$we will get,
\[{}^{51}{{C}_{4}}+{}^{51}{{C}_{3}}={}^{52}{{C}_{4}}\]
Now, replacing \[{}^{51}{{C}_{4}}+{}^{51}{{C}_{3}}\ with\ {}^{52}{{C}_{4}}\] in above equation, we will get,
\[{}^{47}{{C}_{4}}+{}^{51}{{C}_{3}}+{}^{50}{{C}_{3}}+{}^{49}{{C}_{3}}+{}^{48}{{C}_{3}}+{}^{47}{{C}_{3}}={}^{52}{{C}_{4}}\]
Hence, the required value of \[{}^{47}{{C}_{4}}+{}^{51}{{C}_{3}}+{}^{50}{{C}_{3}}+{}^{49}{{C}_{3}}+{}^{48}{{C}_{3}}+{}^{47}{{C}_{3}}\ is{}^{52}{{C}_{4}}\] and we can write \[{}^{52}{{C}_{4}}=C\left( 52,4 \right)\].
Option (C) is the correct answer.
Note:Memorize the identity of binomial theorem used in the solution, $''{}^{n}{{C}_{r}}+{}^{n}{{C}_{r-1}}={}^{n+1}{{C}_{r}}''$. We can prove this identity in the following ways:
$LHS={}^{n}{{C}_{r}}+{}^{n}{{C}_{r-1}}$
We know ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$
$\Rightarrow LHS=\dfrac{n!}{r!\left( n-r \right)!}+\dfrac{n!}{\left( r-1 \right)!\left( n-r+1 \right)!}$
Taking $n!$ common, we will get,
$\Rightarrow LHS=n!\left[ \dfrac{1}{\left( n-r \right)!r!}+\dfrac{1}{\left( n-r+1 \right)!\left( r-1 \right)!} \right]$
Taking $\dfrac{1}{\left( r-1 \right)!}$ common, we get,
$\Rightarrow LHS=\dfrac{n!}{\left( r-1 \right)!}\left[ \dfrac{1}{\left( n-r \right)!r!}+\dfrac{1}{\left( n-r+1 \right)!} \right]$
We know, $n!=n\left( n-1 \right)!,\ so\ \left( n-r+1 \right)!=\left( n-r+1 \right)\left( n-r \right)!$
$\Rightarrow LHS=\dfrac{n!}{\left( r-1 \right)!}\left[ \dfrac{1}{r\left( n-r \right)!}+\dfrac{1}{\left( n-r+1 \right)\left( n-r \right)!} \right]$
Taking $\dfrac{1}{\left( n-r \right)!}$ common, we will get,
$\Rightarrow LHS=\dfrac{n!}{\left( r-1 \right)!\left( n-r \right)!}\left[ \dfrac{1}{r}+\dfrac{1}{n-r+1} \right]$
Taking LCM and adding, we will get,
$\begin{align}
& \Rightarrow LHS=\dfrac{n!}{\left( r-1 \right)!\left( n-r \right)!}\left[ \dfrac{n-{r}+1+{r}}{r\left( n-r+1 \right)} \right] \\
& \Rightarrow LHS=\dfrac{n!}{\left( r-1 \right)!\left( n-r \right)!}\left[ \dfrac{n+1}{r\left( n-r+1 \right)} \right] \\
& \Rightarrow LHS=\dfrac{\left( n+1 \right)n!}{\left( r-1 \right)!\left( n-r+1 \right)\left( n-r \right)!} \\
\end{align}$
We know,
$\begin{align}
& \left( n+1 \right)\times n!=\left( n+1 \right)! \\
& \Rightarrow r\left( r-1 \right)!=r!\ and \\
& \left( n-r+1 \right)\left( n-r \right)!=\left( n-r+1 \right)! \\
\end{align}$
Thus, we will get,
\[\begin{align}
& LHS=\dfrac{\left( n+1 \right)!}{r!\left[ \left( n+1 \right)-r \right]!} \\
& \Rightarrow LHS={}^{n+1}{{C}_{r}} \\
& \Rightarrow LHS=RHS \\
\end{align}\]
Thus, we have proved that ${}^{n}{{C}_{r}}+{}^{n}{{C}_{r-1}}={}^{n+1}{{C}_{r}}$.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

How is gypsum formed class 10 chemistry CBSE

If the line 3x + 4y 24 0 intersects the xaxis at t-class-10-maths-CBSE

Sugar present in DNA is A Heptose B Hexone C Tetrose class 10 biology CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

Indias first jute mill was established in 1854 in A class 10 social science CBSE

Indias first jute mill was established in 1854 in A class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

