
What is \[C\left( 47,4 \right)+C\left( 51,3 \right)+C\left( 50,3 \right)+C\left( 49,3 \right)+C\left( 48,3 \right)+C\left( 47,3 \right)\] equal to?
A. $C\left( 47,4 \right)$
B. $C\left( 52,5 \right)$
C. $C\left( 52,4 \right)$
D. $C\left( 47,5 \right)$
Answer
612.3k+ views
Hint: C(n, r) is the notation used for ${}^{n}{{C}_{r}}$.
Calculate C(47, 4) + C(47, 3) using $''{}^{n}{{C}_{r}}+{}^{n}{{C}_{r-1}}={}^{n+1}{{C}_{r}}''$ and then using the same identity add the obtained with C(49, 3) and using the same identity three more times obtain the required value of
Complete step-by-step answer:
\[{}^{47}{{C}_{4}}+{}^{51}{{C}_{3}}+{}^{50}{{C}_{3}}+{}^{49}{{C}_{3}}+{}^{48}{{C}_{3}}+{}^{47}{{C}_{3}}\].
According to question, we have to find the value of \[C\left( 47,4 \right)+C\left( 51,3 \right)+C\left( 50,3 \right)+C\left( 49,3 \right)+C\left( 48,3 \right)+C\left( 47,3 \right)\]
C(n, r) is the notation used for ${}^{n}{{C}_{r}}$.
So, we have to find the value of \[{}^{47}{{C}_{4}}+{}^{51}{{C}_{3}}+{}^{50}{{C}_{3}}+{}^{49}{{C}_{3}}+{}^{48}{{C}_{3}}+{}^{47}{{C}_{3}}\]
Rearranging the terms, we will get,
\[{}^{47}{{C}_{4}}+{}^{51}{{C}_{3}}+{}^{50}{{C}_{3}}+{}^{49}{{C}_{3}}+{}^{48}{{C}_{3}}+{}^{47}{{C}_{3}}={}^{51}{{C}_{3}}+{}^{50}{{C}_{3}}+{}^{49}{{C}_{3}}+\left( {}^{47}{{C}_{3}}+{}^{47}{{C}_{4}} \right)+{}^{48}{{C}_{3}}\]
We know that $''{}^{n}{{C}_{r}}+{}^{n}{{C}_{r-1}}={}^{n+1}{{C}_{r}}''$
Putting n = 47 and r = 4,
${}^{47}{{C}_{4}}+{}^{47}{{C}_{3}}={}^{48}{{C}_{4}}$
Replacing $''{}^{47}{{C}_{4}}+{}^{47}{{C}_{3}}''\ with\ ''{}^{48}{{C}_{4}}''$, we will get,
\[{}^{47}{{C}_{4}}+{}^{51}{{C}_{3}}+{}^{50}{{C}_{3}}+{}^{49}{{C}_{3}}+{}^{48}{{C}_{3}}+{}^{47}{{C}_{3}}={}^{51}{{C}_{3}}+{}^{50}{{C}_{3}}+{}^{49}{{C}_{3}}+{}^{48}{{C}_{4}}+{}^{48}{{C}_{3}}\]
Again, we will apply $''{}^{n}{{C}_{r}}+{}^{n}{{C}_{r-1}}={}^{n+1}{{C}_{r}}''$ for ${}^{48}{{C}_{3}}+{}^{48}{{C}_{4}}$.
Putting n = 48, r = 4 in the above formula, we will get,
${}^{48}{{C}_{3}}+{}^{48}{{C}_{4}}={}^{49}{{C}_{4}}$
On putting $''{}^{48}{{C}_{3}}+{}^{48}{{C}_{4}}={}^{49}{{C}_{4}}''$in above equation, we will get,
\[{}^{47}{{C}_{4}}+{}^{51}{{C}_{3}}+{}^{50}{{C}_{3}}+{}^{49}{{C}_{3}}+{}^{48}{{C}_{3}}+{}^{47}{{C}_{3}}={}^{51}{{C}_{3}}+{}^{50}{{C}_{3}}+{}^{49}{{C}_{3}}+{}^{49}{{C}_{4}}\]
Again, we will apply the same formula for ${}^{49}{{C}_{3}}+{}^{49}{{C}_{4}}$.
Putting n = 49, r = 4 in the formula $''{}^{n}{{C}_{r}}+{}^{n}{{C}_{r-1}}={}^{n+1}{{C}_{r}}''$we will get,
\[{}^{47}{{C}_{4}}+{}^{51}{{C}_{3}}+{}^{50}{{C}_{3}}+{}^{49}{{C}_{3}}+{}^{48}{{C}_{3}}+{}^{47}{{C}_{3}}={}^{51}{{C}_{3}}+{}^{50}{{C}_{3}}+{}^{50}{{C}_{4}}\]
Again, we will apply the same formula for ${}^{50}{{C}_{3}}+{}^{50}{{C}_{4}}$.
Putting n = 50, r = 4 in the formula $''{}^{n}{{C}_{r}}+{}^{n}{{C}_{r-1}}={}^{n+1}{{C}_{r}}''$we will get,
\[{}^{50}{{C}_{4}}+{}^{50}{{C}_{3}}={}^{51}{{C}_{4}}\]
Now, replacing \[{}^{50}{{C}_{4}}+{}^{50}{{C}_{3}}\ with\ {}^{51}{{C}_{4}}\] in above equation, we will get,
\[{}^{47}{{C}_{4}}+{}^{51}{{C}_{3}}+{}^{50}{{C}_{3}}+{}^{49}{{C}_{3}}+{}^{48}{{C}_{3}}+{}^{47}{{C}_{3}}={}^{51}{{C}_{3}}+{}^{51}{{C}_{4}}\]
Now, we will apply the same formula one more time for \[{}^{51}{{C}_{3}}+{}^{51}{{C}_{4}}\]. Putting n = 51, r = 4 in the formula $''{}^{n}{{C}_{r}}+{}^{n}{{C}_{r-1}}={}^{n+1}{{C}_{r}}''$we will get,
\[{}^{51}{{C}_{4}}+{}^{51}{{C}_{3}}={}^{52}{{C}_{4}}\]
Now, replacing \[{}^{51}{{C}_{4}}+{}^{51}{{C}_{3}}\ with\ {}^{52}{{C}_{4}}\] in above equation, we will get,
\[{}^{47}{{C}_{4}}+{}^{51}{{C}_{3}}+{}^{50}{{C}_{3}}+{}^{49}{{C}_{3}}+{}^{48}{{C}_{3}}+{}^{47}{{C}_{3}}={}^{52}{{C}_{4}}\]
Hence, the required value of \[{}^{47}{{C}_{4}}+{}^{51}{{C}_{3}}+{}^{50}{{C}_{3}}+{}^{49}{{C}_{3}}+{}^{48}{{C}_{3}}+{}^{47}{{C}_{3}}\ is{}^{52}{{C}_{4}}\] and we can write \[{}^{52}{{C}_{4}}=C\left( 52,4 \right)\].
Option (C) is the correct answer.
Note:Memorize the identity of binomial theorem used in the solution, $''{}^{n}{{C}_{r}}+{}^{n}{{C}_{r-1}}={}^{n+1}{{C}_{r}}''$. We can prove this identity in the following ways:
$LHS={}^{n}{{C}_{r}}+{}^{n}{{C}_{r-1}}$
We know ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$
$\Rightarrow LHS=\dfrac{n!}{r!\left( n-r \right)!}+\dfrac{n!}{\left( r-1 \right)!\left( n-r+1 \right)!}$
Taking $n!$ common, we will get,
$\Rightarrow LHS=n!\left[ \dfrac{1}{\left( n-r \right)!r!}+\dfrac{1}{\left( n-r+1 \right)!\left( r-1 \right)!} \right]$
Taking $\dfrac{1}{\left( r-1 \right)!}$ common, we get,
$\Rightarrow LHS=\dfrac{n!}{\left( r-1 \right)!}\left[ \dfrac{1}{\left( n-r \right)!r!}+\dfrac{1}{\left( n-r+1 \right)!} \right]$
We know, $n!=n\left( n-1 \right)!,\ so\ \left( n-r+1 \right)!=\left( n-r+1 \right)\left( n-r \right)!$
$\Rightarrow LHS=\dfrac{n!}{\left( r-1 \right)!}\left[ \dfrac{1}{r\left( n-r \right)!}+\dfrac{1}{\left( n-r+1 \right)\left( n-r \right)!} \right]$
Taking $\dfrac{1}{\left( n-r \right)!}$ common, we will get,
$\Rightarrow LHS=\dfrac{n!}{\left( r-1 \right)!\left( n-r \right)!}\left[ \dfrac{1}{r}+\dfrac{1}{n-r+1} \right]$
Taking LCM and adding, we will get,
$\begin{align}
& \Rightarrow LHS=\dfrac{n!}{\left( r-1 \right)!\left( n-r \right)!}\left[ \dfrac{n-{r}+1+{r}}{r\left( n-r+1 \right)} \right] \\
& \Rightarrow LHS=\dfrac{n!}{\left( r-1 \right)!\left( n-r \right)!}\left[ \dfrac{n+1}{r\left( n-r+1 \right)} \right] \\
& \Rightarrow LHS=\dfrac{\left( n+1 \right)n!}{\left( r-1 \right)!\left( n-r+1 \right)\left( n-r \right)!} \\
\end{align}$
We know,
$\begin{align}
& \left( n+1 \right)\times n!=\left( n+1 \right)! \\
& \Rightarrow r\left( r-1 \right)!=r!\ and \\
& \left( n-r+1 \right)\left( n-r \right)!=\left( n-r+1 \right)! \\
\end{align}$
Thus, we will get,
\[\begin{align}
& LHS=\dfrac{\left( n+1 \right)!}{r!\left[ \left( n+1 \right)-r \right]!} \\
& \Rightarrow LHS={}^{n+1}{{C}_{r}} \\
& \Rightarrow LHS=RHS \\
\end{align}\]
Thus, we have proved that ${}^{n}{{C}_{r}}+{}^{n}{{C}_{r-1}}={}^{n+1}{{C}_{r}}$.
Calculate C(47, 4) + C(47, 3) using $''{}^{n}{{C}_{r}}+{}^{n}{{C}_{r-1}}={}^{n+1}{{C}_{r}}''$ and then using the same identity add the obtained with C(49, 3) and using the same identity three more times obtain the required value of
Complete step-by-step answer:
\[{}^{47}{{C}_{4}}+{}^{51}{{C}_{3}}+{}^{50}{{C}_{3}}+{}^{49}{{C}_{3}}+{}^{48}{{C}_{3}}+{}^{47}{{C}_{3}}\].
According to question, we have to find the value of \[C\left( 47,4 \right)+C\left( 51,3 \right)+C\left( 50,3 \right)+C\left( 49,3 \right)+C\left( 48,3 \right)+C\left( 47,3 \right)\]
C(n, r) is the notation used for ${}^{n}{{C}_{r}}$.
So, we have to find the value of \[{}^{47}{{C}_{4}}+{}^{51}{{C}_{3}}+{}^{50}{{C}_{3}}+{}^{49}{{C}_{3}}+{}^{48}{{C}_{3}}+{}^{47}{{C}_{3}}\]
Rearranging the terms, we will get,
\[{}^{47}{{C}_{4}}+{}^{51}{{C}_{3}}+{}^{50}{{C}_{3}}+{}^{49}{{C}_{3}}+{}^{48}{{C}_{3}}+{}^{47}{{C}_{3}}={}^{51}{{C}_{3}}+{}^{50}{{C}_{3}}+{}^{49}{{C}_{3}}+\left( {}^{47}{{C}_{3}}+{}^{47}{{C}_{4}} \right)+{}^{48}{{C}_{3}}\]
We know that $''{}^{n}{{C}_{r}}+{}^{n}{{C}_{r-1}}={}^{n+1}{{C}_{r}}''$
Putting n = 47 and r = 4,
${}^{47}{{C}_{4}}+{}^{47}{{C}_{3}}={}^{48}{{C}_{4}}$
Replacing $''{}^{47}{{C}_{4}}+{}^{47}{{C}_{3}}''\ with\ ''{}^{48}{{C}_{4}}''$, we will get,
\[{}^{47}{{C}_{4}}+{}^{51}{{C}_{3}}+{}^{50}{{C}_{3}}+{}^{49}{{C}_{3}}+{}^{48}{{C}_{3}}+{}^{47}{{C}_{3}}={}^{51}{{C}_{3}}+{}^{50}{{C}_{3}}+{}^{49}{{C}_{3}}+{}^{48}{{C}_{4}}+{}^{48}{{C}_{3}}\]
Again, we will apply $''{}^{n}{{C}_{r}}+{}^{n}{{C}_{r-1}}={}^{n+1}{{C}_{r}}''$ for ${}^{48}{{C}_{3}}+{}^{48}{{C}_{4}}$.
Putting n = 48, r = 4 in the above formula, we will get,
${}^{48}{{C}_{3}}+{}^{48}{{C}_{4}}={}^{49}{{C}_{4}}$
On putting $''{}^{48}{{C}_{3}}+{}^{48}{{C}_{4}}={}^{49}{{C}_{4}}''$in above equation, we will get,
\[{}^{47}{{C}_{4}}+{}^{51}{{C}_{3}}+{}^{50}{{C}_{3}}+{}^{49}{{C}_{3}}+{}^{48}{{C}_{3}}+{}^{47}{{C}_{3}}={}^{51}{{C}_{3}}+{}^{50}{{C}_{3}}+{}^{49}{{C}_{3}}+{}^{49}{{C}_{4}}\]
Again, we will apply the same formula for ${}^{49}{{C}_{3}}+{}^{49}{{C}_{4}}$.
Putting n = 49, r = 4 in the formula $''{}^{n}{{C}_{r}}+{}^{n}{{C}_{r-1}}={}^{n+1}{{C}_{r}}''$we will get,
\[{}^{47}{{C}_{4}}+{}^{51}{{C}_{3}}+{}^{50}{{C}_{3}}+{}^{49}{{C}_{3}}+{}^{48}{{C}_{3}}+{}^{47}{{C}_{3}}={}^{51}{{C}_{3}}+{}^{50}{{C}_{3}}+{}^{50}{{C}_{4}}\]
Again, we will apply the same formula for ${}^{50}{{C}_{3}}+{}^{50}{{C}_{4}}$.
Putting n = 50, r = 4 in the formula $''{}^{n}{{C}_{r}}+{}^{n}{{C}_{r-1}}={}^{n+1}{{C}_{r}}''$we will get,
\[{}^{50}{{C}_{4}}+{}^{50}{{C}_{3}}={}^{51}{{C}_{4}}\]
Now, replacing \[{}^{50}{{C}_{4}}+{}^{50}{{C}_{3}}\ with\ {}^{51}{{C}_{4}}\] in above equation, we will get,
\[{}^{47}{{C}_{4}}+{}^{51}{{C}_{3}}+{}^{50}{{C}_{3}}+{}^{49}{{C}_{3}}+{}^{48}{{C}_{3}}+{}^{47}{{C}_{3}}={}^{51}{{C}_{3}}+{}^{51}{{C}_{4}}\]
Now, we will apply the same formula one more time for \[{}^{51}{{C}_{3}}+{}^{51}{{C}_{4}}\]. Putting n = 51, r = 4 in the formula $''{}^{n}{{C}_{r}}+{}^{n}{{C}_{r-1}}={}^{n+1}{{C}_{r}}''$we will get,
\[{}^{51}{{C}_{4}}+{}^{51}{{C}_{3}}={}^{52}{{C}_{4}}\]
Now, replacing \[{}^{51}{{C}_{4}}+{}^{51}{{C}_{3}}\ with\ {}^{52}{{C}_{4}}\] in above equation, we will get,
\[{}^{47}{{C}_{4}}+{}^{51}{{C}_{3}}+{}^{50}{{C}_{3}}+{}^{49}{{C}_{3}}+{}^{48}{{C}_{3}}+{}^{47}{{C}_{3}}={}^{52}{{C}_{4}}\]
Hence, the required value of \[{}^{47}{{C}_{4}}+{}^{51}{{C}_{3}}+{}^{50}{{C}_{3}}+{}^{49}{{C}_{3}}+{}^{48}{{C}_{3}}+{}^{47}{{C}_{3}}\ is{}^{52}{{C}_{4}}\] and we can write \[{}^{52}{{C}_{4}}=C\left( 52,4 \right)\].
Option (C) is the correct answer.
Note:Memorize the identity of binomial theorem used in the solution, $''{}^{n}{{C}_{r}}+{}^{n}{{C}_{r-1}}={}^{n+1}{{C}_{r}}''$. We can prove this identity in the following ways:
$LHS={}^{n}{{C}_{r}}+{}^{n}{{C}_{r-1}}$
We know ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$
$\Rightarrow LHS=\dfrac{n!}{r!\left( n-r \right)!}+\dfrac{n!}{\left( r-1 \right)!\left( n-r+1 \right)!}$
Taking $n!$ common, we will get,
$\Rightarrow LHS=n!\left[ \dfrac{1}{\left( n-r \right)!r!}+\dfrac{1}{\left( n-r+1 \right)!\left( r-1 \right)!} \right]$
Taking $\dfrac{1}{\left( r-1 \right)!}$ common, we get,
$\Rightarrow LHS=\dfrac{n!}{\left( r-1 \right)!}\left[ \dfrac{1}{\left( n-r \right)!r!}+\dfrac{1}{\left( n-r+1 \right)!} \right]$
We know, $n!=n\left( n-1 \right)!,\ so\ \left( n-r+1 \right)!=\left( n-r+1 \right)\left( n-r \right)!$
$\Rightarrow LHS=\dfrac{n!}{\left( r-1 \right)!}\left[ \dfrac{1}{r\left( n-r \right)!}+\dfrac{1}{\left( n-r+1 \right)\left( n-r \right)!} \right]$
Taking $\dfrac{1}{\left( n-r \right)!}$ common, we will get,
$\Rightarrow LHS=\dfrac{n!}{\left( r-1 \right)!\left( n-r \right)!}\left[ \dfrac{1}{r}+\dfrac{1}{n-r+1} \right]$
Taking LCM and adding, we will get,
$\begin{align}
& \Rightarrow LHS=\dfrac{n!}{\left( r-1 \right)!\left( n-r \right)!}\left[ \dfrac{n-{r}+1+{r}}{r\left( n-r+1 \right)} \right] \\
& \Rightarrow LHS=\dfrac{n!}{\left( r-1 \right)!\left( n-r \right)!}\left[ \dfrac{n+1}{r\left( n-r+1 \right)} \right] \\
& \Rightarrow LHS=\dfrac{\left( n+1 \right)n!}{\left( r-1 \right)!\left( n-r+1 \right)\left( n-r \right)!} \\
\end{align}$
We know,
$\begin{align}
& \left( n+1 \right)\times n!=\left( n+1 \right)! \\
& \Rightarrow r\left( r-1 \right)!=r!\ and \\
& \left( n-r+1 \right)\left( n-r \right)!=\left( n-r+1 \right)! \\
\end{align}$
Thus, we will get,
\[\begin{align}
& LHS=\dfrac{\left( n+1 \right)!}{r!\left[ \left( n+1 \right)-r \right]!} \\
& \Rightarrow LHS={}^{n+1}{{C}_{r}} \\
& \Rightarrow LHS=RHS \\
\end{align}\]
Thus, we have proved that ${}^{n}{{C}_{r}}+{}^{n}{{C}_{r-1}}={}^{n+1}{{C}_{r}}$.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

