Answer

Verified

452.4k+ views

Hint – In this question use trigonometric identities which is $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ and ${\sin ^2}\theta + {\cos ^2}\theta = 1{\text{, }}{\cos ^2}\theta - {\sin ^2}\theta = \cos 2\theta $, to reach the answer.

Given equation is

$\dfrac{{1 - {{\tan }^2}{{45}^0}}}{{1 + {{\tan }^2}{{45}^0}}}$

Method - 1

As we know that $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$

Substitute this value in above equation we have

$\dfrac{{1 - \dfrac{{{{\sin }^2}{{45}^0}}}{{{{\cos }^2}{{45}^0}}}}}{{1 + \dfrac{{{{\sin }^2}{{45}^0}}}{{{{\cos }^2}{{45}^0}}}}} = \dfrac{{{{\cos }^2}{{45}^0} - {{\sin }^2}{{45}^0}}}{{{{\cos }^2}{{45}^0} + {{\sin }^2}{{45}^0}}}$

Now as we know that ${\sin ^2}\theta + {\cos ^2}\theta = 1{\text{, }}{\cos ^2}\theta - {\sin ^2}\theta = \cos 2\theta $

$ \Rightarrow \dfrac{{{{\cos }^2}{{45}^0} - {{\sin }^2}{{45}^0}}}{{{{\cos }^2}{{45}^0} + {{\sin }^2}{{45}^0}}} = \dfrac{{\cos \left( {2 \times {{45}^0}} \right)}}{1} = \cos {90^0}$

Now we all know that the value of $\cos {90^0}$ is zero.

$\dfrac{{1 - {{\tan }^2}{{45}^0}}}{{1 + {{\tan }^2}{{45}^0}}} = \cos {90^0} = 0$

Method – 2

As we all know that the value of $\tan {45^0}$ is one.

$ \Rightarrow \dfrac{{1 - {{\tan }^2}{{45}^0}}}{{1 + {{\tan }^2}{{45}^0}}} = \dfrac{{1 - 1}}{{1 + 1}} = \dfrac{0}{2} = 0$

Hence, option (d) is correct.

Note – In such types of questions the key concept we have to remember is that always recall the basic trigonometric identities which are stated above and always remember the values of all standard angles, so apply these properties and values in the given equation we will get the required answer.

Given equation is

$\dfrac{{1 - {{\tan }^2}{{45}^0}}}{{1 + {{\tan }^2}{{45}^0}}}$

Method - 1

As we know that $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$

Substitute this value in above equation we have

$\dfrac{{1 - \dfrac{{{{\sin }^2}{{45}^0}}}{{{{\cos }^2}{{45}^0}}}}}{{1 + \dfrac{{{{\sin }^2}{{45}^0}}}{{{{\cos }^2}{{45}^0}}}}} = \dfrac{{{{\cos }^2}{{45}^0} - {{\sin }^2}{{45}^0}}}{{{{\cos }^2}{{45}^0} + {{\sin }^2}{{45}^0}}}$

Now as we know that ${\sin ^2}\theta + {\cos ^2}\theta = 1{\text{, }}{\cos ^2}\theta - {\sin ^2}\theta = \cos 2\theta $

$ \Rightarrow \dfrac{{{{\cos }^2}{{45}^0} - {{\sin }^2}{{45}^0}}}{{{{\cos }^2}{{45}^0} + {{\sin }^2}{{45}^0}}} = \dfrac{{\cos \left( {2 \times {{45}^0}} \right)}}{1} = \cos {90^0}$

Now we all know that the value of $\cos {90^0}$ is zero.

$\dfrac{{1 - {{\tan }^2}{{45}^0}}}{{1 + {{\tan }^2}{{45}^0}}} = \cos {90^0} = 0$

Method – 2

As we all know that the value of $\tan {45^0}$ is one.

$ \Rightarrow \dfrac{{1 - {{\tan }^2}{{45}^0}}}{{1 + {{\tan }^2}{{45}^0}}} = \dfrac{{1 - 1}}{{1 + 1}} = \dfrac{0}{2} = 0$

Hence, option (d) is correct.

Note – In such types of questions the key concept we have to remember is that always recall the basic trigonometric identities which are stated above and always remember the values of all standard angles, so apply these properties and values in the given equation we will get the required answer.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

Change the following sentences into negative and interrogative class 10 english CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE