Answer

Verified

339k+ views

**Hint:**The above question is based on the concept of limit comparison test. The main approach towards solving this is to divide \[{A_n}\] and \[{B_n}\] where \[{A_n}\] is the original series and \[{B_n}\] is the second series. We can come to know with the help of the second series whether the original series is converging or diverging.

**Complete step by step solution:**

In mathematics, the limit comparison test is a method of testing for the convergence of infinite series.

Now suppose that we have two series given

\[\sum {_n{A_n}} \] and \[\sum {_n{B_n}} \] where \[{A_n} \geqslant 0,{B_n} > 0\] for all the n.

Then if \[\mathop {\lim }\limits_{n \to \infty } \dfrac{{{A_n}}}{{{B_{_n}}}} = L\] with \[0 < L < \infty \],

then either both series diverge or both series converge.

Now,

If $L < \infty $and \[\sum\limits_{n = 0}^\infty {{B_n}} \] converges, then \[\sum\limits_{n = 0}^\infty {{A_n}} \] also converges.

If $L > 0$and \[\sum\limits_{n = 0}^\infty {{B_n}} \] diverges to \[\infty \], then \[\sum\limits_{n = 0}^\infty {{A_n}} \] also converges.

Now let’s consider a series \[{A_n}\] for as \[\sum\limits_{n = 1}^\infty {\dfrac{2}{{{n^3} - 4}}} \].Now if I compare with \[\dfrac{1}{{{n^3}}}\] as another series i.e\[{B_n}\]

but \[\dfrac{1}{{{n^3} - 4}}\] is not $ \leqslant \dfrac{1}{{{n^3}}}$ for all n.

So now dividing the series of \[{A_n}\] and \[{B_n}\]

\[\mathop {\lim }\limits_{n \to \infty } \dfrac{{\dfrac{2}{{{n^3} - 4}}}}{{\dfrac{1}{{{n^3}}}}} =

\dfrac{2}{{{n^3} - 4}} \times \dfrac{{{n^3}}}{1} = \dfrac{{2{n^3}}}{{{n^3} - 4}}\]

Now if the power of the numerator is the same as in the denominator then we take the ratio of coefficients \[\dfrac{2}{1}\]. Since it turns out to be a positive finite number then both series do the same thing.

**We know that \[{B_n} = \sum\limits_{n = 1}^\infty {\dfrac{1}{{{n^3}}}} \]is converging then the original series is also converging.**

**Note:**If we want to know something about the series \[\sum {{a_n}} \] , the limit comparison test suggests that we should look for an appropriate series \[\sum {{b_n}} \], where the underlying sequences \[{a_n}\] and \[{b_n}\] behave similarly in the sense that \[\mathop {\lim }\limits_{n \to \infty } \dfrac{{{a_n}}}{{{b_n}}}\] exists. That is, if we understand how \[\sum {{b_n}} \]behaves then we understand \[\sum {{a_n}} \].

Recently Updated Pages

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

How do you arrange NH4 + BF3 H2O C2H2 in increasing class 11 chemistry CBSE

Is H mCT and q mCT the same thing If so which is more class 11 chemistry CBSE

What are the possible quantum number for the last outermost class 11 chemistry CBSE

Is C2 paramagnetic or diamagnetic class 11 chemistry CBSE

What happens when entropy reaches maximum class 11 chemistry JEE_Main

Trending doubts

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

Change the following sentences into negative and interrogative class 10 english CBSE

State the laws of reflection of light

State and prove Bernoullis theorem class 11 physics CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE