Answer

Verified

416.7k+ views

**Hint:**The above question is based on the concept of limit comparison test. The main approach towards solving this is to divide \[{A_n}\] and \[{B_n}\] where \[{A_n}\] is the original series and \[{B_n}\] is the second series. We can come to know with the help of the second series whether the original series is converging or diverging.

**Complete step by step solution:**

In mathematics, the limit comparison test is a method of testing for the convergence of infinite series.

Now suppose that we have two series given

\[\sum {_n{A_n}} \] and \[\sum {_n{B_n}} \] where \[{A_n} \geqslant 0,{B_n} > 0\] for all the n.

Then if \[\mathop {\lim }\limits_{n \to \infty } \dfrac{{{A_n}}}{{{B_{_n}}}} = L\] with \[0 < L < \infty \],

then either both series diverge or both series converge.

Now,

If $L < \infty $and \[\sum\limits_{n = 0}^\infty {{B_n}} \] converges, then \[\sum\limits_{n = 0}^\infty {{A_n}} \] also converges.

If $L > 0$and \[\sum\limits_{n = 0}^\infty {{B_n}} \] diverges to \[\infty \], then \[\sum\limits_{n = 0}^\infty {{A_n}} \] also converges.

Now let’s consider a series \[{A_n}\] for as \[\sum\limits_{n = 1}^\infty {\dfrac{2}{{{n^3} - 4}}} \].Now if I compare with \[\dfrac{1}{{{n^3}}}\] as another series i.e\[{B_n}\]

but \[\dfrac{1}{{{n^3} - 4}}\] is not $ \leqslant \dfrac{1}{{{n^3}}}$ for all n.

So now dividing the series of \[{A_n}\] and \[{B_n}\]

\[\mathop {\lim }\limits_{n \to \infty } \dfrac{{\dfrac{2}{{{n^3} - 4}}}}{{\dfrac{1}{{{n^3}}}}} =

\dfrac{2}{{{n^3} - 4}} \times \dfrac{{{n^3}}}{1} = \dfrac{{2{n^3}}}{{{n^3} - 4}}\]

Now if the power of the numerator is the same as in the denominator then we take the ratio of coefficients \[\dfrac{2}{1}\]. Since it turns out to be a positive finite number then both series do the same thing.

**We know that \[{B_n} = \sum\limits_{n = 1}^\infty {\dfrac{1}{{{n^3}}}} \]is converging then the original series is also converging.**

**Note:**If we want to know something about the series \[\sum {{a_n}} \] , the limit comparison test suggests that we should look for an appropriate series \[\sum {{b_n}} \], where the underlying sequences \[{a_n}\] and \[{b_n}\] behave similarly in the sense that \[\mathop {\lim }\limits_{n \to \infty } \dfrac{{{a_n}}}{{{b_n}}}\] exists. That is, if we understand how \[\sum {{b_n}} \]behaves then we understand \[\sum {{a_n}} \].

Recently Updated Pages

what is the correct chronological order of the following class 10 social science CBSE

Which of the following was not the actual cause for class 10 social science CBSE

Which of the following statements is not correct A class 10 social science CBSE

Which of the following leaders was not present in the class 10 social science CBSE

Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE

Which one of the following places is not covered by class 10 social science CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

How do you graph the function fx 4x class 9 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE