
How to choose the ${B_n}$ for limit comparison test?
Answer
538.5k+ views
Hint: The above question is based on the concept of limit comparison test. The main approach towards solving this is to divide \[{A_n}\] and \[{B_n}\] where \[{A_n}\] is the original series and \[{B_n}\] is the second series. We can come to know with the help of the second series whether the original series is converging or diverging.
Complete step by step solution:
In mathematics, the limit comparison test is a method of testing for the convergence of infinite series.
Now suppose that we have two series given
\[\sum {_n{A_n}} \] and \[\sum {_n{B_n}} \] where \[{A_n} \geqslant 0,{B_n} > 0\] for all the n.
Then if \[\mathop {\lim }\limits_{n \to \infty } \dfrac{{{A_n}}}{{{B_{_n}}}} = L\] with \[0 < L < \infty \],
then either both series diverge or both series converge.
Now,
If $L < \infty $and \[\sum\limits_{n = 0}^\infty {{B_n}} \] converges, then \[\sum\limits_{n = 0}^\infty {{A_n}} \] also converges.
If $L > 0$and \[\sum\limits_{n = 0}^\infty {{B_n}} \] diverges to \[\infty \], then \[\sum\limits_{n = 0}^\infty {{A_n}} \] also converges.
Now let’s consider a series \[{A_n}\] for as \[\sum\limits_{n = 1}^\infty {\dfrac{2}{{{n^3} - 4}}} \].Now if I compare with \[\dfrac{1}{{{n^3}}}\] as another series i.e\[{B_n}\]
but \[\dfrac{1}{{{n^3} - 4}}\] is not $ \leqslant \dfrac{1}{{{n^3}}}$ for all n.
So now dividing the series of \[{A_n}\] and \[{B_n}\]
\[\mathop {\lim }\limits_{n \to \infty } \dfrac{{\dfrac{2}{{{n^3} - 4}}}}{{\dfrac{1}{{{n^3}}}}} =
\dfrac{2}{{{n^3} - 4}} \times \dfrac{{{n^3}}}{1} = \dfrac{{2{n^3}}}{{{n^3} - 4}}\]
Now if the power of the numerator is the same as in the denominator then we take the ratio of coefficients \[\dfrac{2}{1}\]. Since it turns out to be a positive finite number then both series do the same thing.
We know that \[{B_n} = \sum\limits_{n = 1}^\infty {\dfrac{1}{{{n^3}}}} \]is converging then the original series is also converging.
Note: If we want to know something about the series \[\sum {{a_n}} \] , the limit comparison test suggests that we should look for an appropriate series \[\sum {{b_n}} \], where the underlying sequences \[{a_n}\] and \[{b_n}\] behave similarly in the sense that \[\mathop {\lim }\limits_{n \to \infty } \dfrac{{{a_n}}}{{{b_n}}}\] exists. That is, if we understand how \[\sum {{b_n}} \]behaves then we understand \[\sum {{a_n}} \].
Complete step by step solution:
In mathematics, the limit comparison test is a method of testing for the convergence of infinite series.
Now suppose that we have two series given
\[\sum {_n{A_n}} \] and \[\sum {_n{B_n}} \] where \[{A_n} \geqslant 0,{B_n} > 0\] for all the n.
Then if \[\mathop {\lim }\limits_{n \to \infty } \dfrac{{{A_n}}}{{{B_{_n}}}} = L\] with \[0 < L < \infty \],
then either both series diverge or both series converge.
Now,
If $L < \infty $and \[\sum\limits_{n = 0}^\infty {{B_n}} \] converges, then \[\sum\limits_{n = 0}^\infty {{A_n}} \] also converges.
If $L > 0$and \[\sum\limits_{n = 0}^\infty {{B_n}} \] diverges to \[\infty \], then \[\sum\limits_{n = 0}^\infty {{A_n}} \] also converges.
Now let’s consider a series \[{A_n}\] for as \[\sum\limits_{n = 1}^\infty {\dfrac{2}{{{n^3} - 4}}} \].Now if I compare with \[\dfrac{1}{{{n^3}}}\] as another series i.e\[{B_n}\]
but \[\dfrac{1}{{{n^3} - 4}}\] is not $ \leqslant \dfrac{1}{{{n^3}}}$ for all n.
So now dividing the series of \[{A_n}\] and \[{B_n}\]
\[\mathop {\lim }\limits_{n \to \infty } \dfrac{{\dfrac{2}{{{n^3} - 4}}}}{{\dfrac{1}{{{n^3}}}}} =
\dfrac{2}{{{n^3} - 4}} \times \dfrac{{{n^3}}}{1} = \dfrac{{2{n^3}}}{{{n^3} - 4}}\]
Now if the power of the numerator is the same as in the denominator then we take the ratio of coefficients \[\dfrac{2}{1}\]. Since it turns out to be a positive finite number then both series do the same thing.
We know that \[{B_n} = \sum\limits_{n = 1}^\infty {\dfrac{1}{{{n^3}}}} \]is converging then the original series is also converging.
Note: If we want to know something about the series \[\sum {{a_n}} \] , the limit comparison test suggests that we should look for an appropriate series \[\sum {{b_n}} \], where the underlying sequences \[{a_n}\] and \[{b_n}\] behave similarly in the sense that \[\mathop {\lim }\limits_{n \to \infty } \dfrac{{{a_n}}}{{{b_n}}}\] exists. That is, if we understand how \[\sum {{b_n}} \]behaves then we understand \[\sum {{a_n}} \].
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

