
Check if the value of $\left( {\dfrac{1}{4} + \dfrac{1}{8} + \dfrac{1}{{16}} + \ldots \ldots + \infty } \right)$ is $\dfrac{1}{2}$
Answer
599.7k+ views
Hint: Try to take out common terms and make the series simpler to solve.
Given series: $\left( {\dfrac{1}{4} + \dfrac{1}{8} + \dfrac{1}{{16}} + \ldots \ldots + \infty } \right)$
$ \Rightarrow \dfrac{1}{4}\left[ {1 + \dfrac{1}{2} + \dfrac{1}{4} + \ldots \ldots + \infty } \right]{\text{ }} \ldots \left( 1 \right)$
Here, we assume the above equation as the sum of terms in a Geometric Progression with $a = 1,{\text{ }}r = \dfrac{{\dfrac{1}{2}}}{1} = 1$ .
Now, applying the sum of a Geometric Progression:
$
\Rightarrow \left[ {1 + \dfrac{1}{2} + \dfrac{1}{4} + \ldots \ldots + \infty } \right] = \dfrac{a}{{1 - r}} \\
\Rightarrow \left[ {1 + \dfrac{1}{2} + \dfrac{1}{4} + \ldots \ldots + \infty } \right] = \dfrac{1}{{\left( {1 - \dfrac{1}{2}} \right)}} \\
\Rightarrow \left[ {1 + \dfrac{1}{2} + \dfrac{1}{4} + \ldots \ldots + \infty } \right] = \dfrac{1}{{\left( {\dfrac{1}{2}} \right)}} \\
\Rightarrow \left[ {1 + \dfrac{1}{2} + \dfrac{1}{4} + \ldots \ldots + \infty } \right] = 2 \\
$
Putting this value in equation (1), we get
$
\Rightarrow \dfrac{1}{4}\left( 2 \right) \\
\Rightarrow \dfrac{1}{2} \\
$
Note: Whenever we are supposed to find the sum of a series, always try to make the series in the form of Arithmetic Progression or Geometric Progression or Harmonic Progression and then simply use the sum of series formula which is already defined for these progressions.
Given series: $\left( {\dfrac{1}{4} + \dfrac{1}{8} + \dfrac{1}{{16}} + \ldots \ldots + \infty } \right)$
$ \Rightarrow \dfrac{1}{4}\left[ {1 + \dfrac{1}{2} + \dfrac{1}{4} + \ldots \ldots + \infty } \right]{\text{ }} \ldots \left( 1 \right)$
Here, we assume the above equation as the sum of terms in a Geometric Progression with $a = 1,{\text{ }}r = \dfrac{{\dfrac{1}{2}}}{1} = 1$ .
Now, applying the sum of a Geometric Progression:
$
\Rightarrow \left[ {1 + \dfrac{1}{2} + \dfrac{1}{4} + \ldots \ldots + \infty } \right] = \dfrac{a}{{1 - r}} \\
\Rightarrow \left[ {1 + \dfrac{1}{2} + \dfrac{1}{4} + \ldots \ldots + \infty } \right] = \dfrac{1}{{\left( {1 - \dfrac{1}{2}} \right)}} \\
\Rightarrow \left[ {1 + \dfrac{1}{2} + \dfrac{1}{4} + \ldots \ldots + \infty } \right] = \dfrac{1}{{\left( {\dfrac{1}{2}} \right)}} \\
\Rightarrow \left[ {1 + \dfrac{1}{2} + \dfrac{1}{4} + \ldots \ldots + \infty } \right] = 2 \\
$
Putting this value in equation (1), we get
$
\Rightarrow \dfrac{1}{4}\left( 2 \right) \\
\Rightarrow \dfrac{1}{2} \\
$
Note: Whenever we are supposed to find the sum of a series, always try to make the series in the form of Arithmetic Progression or Geometric Progression or Harmonic Progression and then simply use the sum of series formula which is already defined for these progressions.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

How many 5 digit telephone numbers can be constructed class 11 maths CBSE

Draw a well labelled diagram of reflex arc and explain class 11 biology CBSE

What is the difference between noise and music Can class 11 physics CBSE

Trending doubts
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

10 examples of friction in our daily life

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

