
How many changes can be rung with a peal of 7 bells, the tenor always being last?
Answer
607.8k+ views
Hint: All bells in a peal are different and the position of tenor is fixed. Taking these factors into account permutations is carried out.
As we know that,
Number of ways to arrange n things is ${\text{n!}}$.
So, the number of changes that can be rung with a peal of $n$ bells is ${\text{n!}}$.
But here we are given a condition that tenor is always at last.
So, the position of tenor is fixed now.
So, bells left that can still be rearranged are 6 i.e., we can make changes with 6 bells only.
So, the number of changes that can be made with 6 bells is ${\text{6!}}$.
As we know that ${\text{n!}}$ is calculated as,
\[ \Rightarrow {\text{n!}} = n*(n - 1)*(n - 2).*..........*2*1\]
So, \[{\text{6!}} = 6*5*4*3*2*1 = 720\]
\[ \Rightarrow \]Hence, 720 changes can be rung with a peal of 7 bells, the tenor being last.
Note: Whenever we come up with these types of problems then, we have to only find changes for the objects that are not fixed and that will be \[{\text{n!}}\], if n is the number of such objects because if an object is fixed then its position cannot be changed/rearranged.
As we know that,
Number of ways to arrange n things is ${\text{n!}}$.
So, the number of changes that can be rung with a peal of $n$ bells is ${\text{n!}}$.
But here we are given a condition that tenor is always at last.
So, the position of tenor is fixed now.
So, bells left that can still be rearranged are 6 i.e., we can make changes with 6 bells only.
So, the number of changes that can be made with 6 bells is ${\text{6!}}$.
As we know that ${\text{n!}}$ is calculated as,
\[ \Rightarrow {\text{n!}} = n*(n - 1)*(n - 2).*..........*2*1\]
So, \[{\text{6!}} = 6*5*4*3*2*1 = 720\]
\[ \Rightarrow \]Hence, 720 changes can be rung with a peal of 7 bells, the tenor being last.
Note: Whenever we come up with these types of problems then, we have to only find changes for the objects that are not fixed and that will be \[{\text{n!}}\], if n is the number of such objects because if an object is fixed then its position cannot be changed/rearranged.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

