Answer
Verified
486.9k+ views
Hint: In each part, the number of favourable outcomes can be calculated manually. There is no need of applying the concept of permutation and combination.
Before proceeding with the question, we must know the definition of the probability. The probability of an event $X$ is defined as the ratio of the number of outcomes favourable to event $X$ and the total number of possible outcomes in the sample space. Mathematically,’
$P\left( X \right)=\dfrac{n\left( X \right)}{n\left( S \right)}...............\left( 1 \right)$
In this question, we have cards numbered from $11$ to $60$. So, the sample space $S$ is,
$S=\left\{ 11,12,13,14,................,58,59,60 \right\}$
So, total number of possible outcomes $n\left( S \right)$ which is same for each part in the question and is equal to,
$n\left( S \right)=50..............\left( 2 \right)$
(i) It is given that the card drawn is an odd number i.e. set $X$ is,
$X=\left\{ 11,13,15,.........,53,57,59 \right\}$
So, $n\left( X \right)=25.........\left( 3 \right)$
Substituting $n\left( X \right)=25$ from equation $\left( 3 \right)$ and $n\left( S \right)=50$ from equation $\left( 2 \right)$ in equation $\left( 1 \right)$, we get,
$\begin{align}
& P\left( X \right)=\dfrac{25}{50} \\
& \Rightarrow P\left( X \right)=\dfrac{1}{2} \\
\end{align}$
(ii) It is given that the card drawn is a perfect square number i.e. set $X$ is,
$X=\left\{ 16,25,36,49 \right\}$
So, $n\left( X \right)=4.........\left( 4 \right)$
Substituting $n\left( X \right)=4$ from equation $\left( 4 \right)$ and $n\left( S \right)=50$ from equation $\left( 2 \right)$ in equation $\left( 1 \right)$, we get,
$\begin{align}
& P\left( X \right)=\dfrac{4}{50} \\
& \Rightarrow P\left( X \right)=\dfrac{2}{25} \\
\end{align}$
(iii) It is given that the card drawn is a number which is divisible by $5$ i.e. set $X$ is,
$X=\left\{ 15,20,25,30,35,40,45,50,55,60 \right\}$
So, $n\left( X \right)=10.........\left( 5 \right)$
Substituting $n\left( X \right)=10$ from equation $\left( 5 \right)$ and $n\left( S \right)=50$ from equation $\left( 2 \right)$ in equation $\left( 1 \right)$, we get,
$\begin{align}
& P\left( X \right)=\dfrac{10}{50} \\
& \Rightarrow P\left( X \right)=\dfrac{1}{5} \\
\end{align}$
(iv) It is given that the card drawn is a prime number less than $20$ i.e. set $X$ is,
$X=\left\{ 11,13,17,19 \right\}$
So, $n\left( X \right)=4.........\left( 6 \right)$
Substituting $n\left( X \right)=4$ from equation $\left( 6 \right)$ and $n\left( S \right)=50$ from equation $\left( 2 \right)$ in equation $\left( 1 \right)$, we get,
$\begin{align}
& P\left( X \right)=\dfrac{4}{50} \\
& \Rightarrow P\left( X \right)=\dfrac{2}{25} \\
\end{align}$
Hence, the answer of $\left( i \right)$ is $\dfrac{1}{2}$, $\left( ii \right)$ is $\dfrac{2}{25}$, $\left( iii \right)$ is $\dfrac{1}{5}$, $\left( iv \right)$ is $\dfrac{2}{25}$.
Note: There is a possibility of committing mistakes while calculating the number of favourable outcomes. Since we are calculating the number of favourable outcomes by finding out the set $X$, there is a possibility that one may find out the wrong number.
Before proceeding with the question, we must know the definition of the probability. The probability of an event $X$ is defined as the ratio of the number of outcomes favourable to event $X$ and the total number of possible outcomes in the sample space. Mathematically,’
$P\left( X \right)=\dfrac{n\left( X \right)}{n\left( S \right)}...............\left( 1 \right)$
In this question, we have cards numbered from $11$ to $60$. So, the sample space $S$ is,
$S=\left\{ 11,12,13,14,................,58,59,60 \right\}$
So, total number of possible outcomes $n\left( S \right)$ which is same for each part in the question and is equal to,
$n\left( S \right)=50..............\left( 2 \right)$
(i) It is given that the card drawn is an odd number i.e. set $X$ is,
$X=\left\{ 11,13,15,.........,53,57,59 \right\}$
So, $n\left( X \right)=25.........\left( 3 \right)$
Substituting $n\left( X \right)=25$ from equation $\left( 3 \right)$ and $n\left( S \right)=50$ from equation $\left( 2 \right)$ in equation $\left( 1 \right)$, we get,
$\begin{align}
& P\left( X \right)=\dfrac{25}{50} \\
& \Rightarrow P\left( X \right)=\dfrac{1}{2} \\
\end{align}$
(ii) It is given that the card drawn is a perfect square number i.e. set $X$ is,
$X=\left\{ 16,25,36,49 \right\}$
So, $n\left( X \right)=4.........\left( 4 \right)$
Substituting $n\left( X \right)=4$ from equation $\left( 4 \right)$ and $n\left( S \right)=50$ from equation $\left( 2 \right)$ in equation $\left( 1 \right)$, we get,
$\begin{align}
& P\left( X \right)=\dfrac{4}{50} \\
& \Rightarrow P\left( X \right)=\dfrac{2}{25} \\
\end{align}$
(iii) It is given that the card drawn is a number which is divisible by $5$ i.e. set $X$ is,
$X=\left\{ 15,20,25,30,35,40,45,50,55,60 \right\}$
So, $n\left( X \right)=10.........\left( 5 \right)$
Substituting $n\left( X \right)=10$ from equation $\left( 5 \right)$ and $n\left( S \right)=50$ from equation $\left( 2 \right)$ in equation $\left( 1 \right)$, we get,
$\begin{align}
& P\left( X \right)=\dfrac{10}{50} \\
& \Rightarrow P\left( X \right)=\dfrac{1}{5} \\
\end{align}$
(iv) It is given that the card drawn is a prime number less than $20$ i.e. set $X$ is,
$X=\left\{ 11,13,17,19 \right\}$
So, $n\left( X \right)=4.........\left( 6 \right)$
Substituting $n\left( X \right)=4$ from equation $\left( 6 \right)$ and $n\left( S \right)=50$ from equation $\left( 2 \right)$ in equation $\left( 1 \right)$, we get,
$\begin{align}
& P\left( X \right)=\dfrac{4}{50} \\
& \Rightarrow P\left( X \right)=\dfrac{2}{25} \\
\end{align}$
Hence, the answer of $\left( i \right)$ is $\dfrac{1}{2}$, $\left( ii \right)$ is $\dfrac{2}{25}$, $\left( iii \right)$ is $\dfrac{1}{5}$, $\left( iv \right)$ is $\dfrac{2}{25}$.
Note: There is a possibility of committing mistakes while calculating the number of favourable outcomes. Since we are calculating the number of favourable outcomes by finding out the set $X$, there is a possibility that one may find out the wrong number.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
Write the difference between order and molecularity class 11 maths CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What are noble gases Why are they also called inert class 11 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between calcination and roasting class 11 chemistry CBSE