
Calculate the value of $ \gamma = \dfrac{{{C_p}}}{{{C_v}}} $ for a gaseous mixture containing of $ {v_1} = 2.0 $ moles of
Oxygen and $ {v_2} = 3.0 $ moles of carbon-di-oxide. The gases are assumed to be ideal.
A. 1.33
B. 1.45
C. 2.11
D. 1.7
Answer
531k+ views
Hint :Here we are asked to calculate the Heat capacity ratio of two gases i.e. oxygen and carbon dioxide. $ {C_p} $ is heat capacity at constant pressure and $ {C_v} $ is heat capacity at constant volume. Try to find the degree of freedom of these gases. Then calculate the given quantities of the given mixture of gases. Now you can easily calculate the value of $ \gamma $ .
Complete Step By Step Answer:
Let $ {n_1} $ be the moles of oxygen
$ {n_2} $ be the moles of carbon dioxide
Total moles = $ {n_1} + {n_2} = n $
$ {\gamma _1},{C_{p1}},{C_{v1}} $ be for oxygen and
$ {\gamma _2},{C_{p2}},{C_{v2}} $ be for carbon dioxide
Now we have to calculate the value of $ {C_p} $ and $ {C_v} $ for a given mixture of gases.
$ {C_v} $ for mixture of gases.
$ {C_v} = \dfrac{{{C_{v1}}{n_1} + {C_{v2}}{n_2}}}{{{n_1} + {n_2}}} $ ---(1)
And $ {C_p} $ for mixture of gases
$ {C_p} = \dfrac{{{C_{p1}}{n_1} + {C_{p2}}{n_2}}}{{{n_1} + {n_2}}} $ ----(2)
Now we have
$ \gamma = \dfrac{{{C_p}}}{{{C_v}}} $ and $ {C_v} = \dfrac{R}{{\gamma - 1}} $
Therefore $ {C_p} = \dfrac{{\gamma R}}{{\gamma - 1}} $
Now putting all values in equation 1 and 2 we get
$ {C_p} = \dfrac{{{n_1}{C_{p1}} + {n_2}{C_{p2}}}}{n} $
$ {C_p} = \dfrac{{{n_1}\dfrac{{{\gamma _1}R}}{{{\gamma _1} - 1}} + {n_2}\dfrac{{{\gamma _2}R}}{{{\gamma _2} - 1}}}}{n} $ ……… (3)
$ {C_v} = \dfrac{{{n_1}{C_{v1}} + {n_2}{C_{v2}}}}{n} $
$ {C_v} = \dfrac{{{n_1}\dfrac{R}{{{\gamma _1} - 1}} + {n_2}\dfrac{R}{{{\gamma _2} - 1}}}}{n} $ ………. (4)
From equation 3 and 4 we get
$ \gamma = \dfrac{{{C_p}}}{{{C_v}}} $ = $ = \dfrac{{\dfrac{{{n_1}\dfrac{{{\gamma _1}R}}{{{\gamma _1} - 1}} + {n_2}\dfrac{{{\gamma _2}R}}{{{\gamma _2} - 1}}}}{n}}}{{\dfrac{{{n_1}\dfrac{R}{{{\gamma _1} - 1}} + {n_2}\dfrac{R}{{{\gamma _2} - 1}}}}{n}}} $
Finally we get
$ \gamma = \dfrac{{{n_1}{\gamma _1}({\gamma _2} - 1) + {n_2}{\gamma _2}({\gamma _1} - 1)}}{{{n_1}({\gamma _2} - 1) + {n_2}({\gamma _1} - 1)}} $
As we know oxygen is diatomic therefore $ {\gamma _1} $ = 1.4
And for carbon dioxide $ {\gamma _2} $ = 1.28
Putting the values and solving
$ \dfrac{{2.(1.4(1.28 - 1)) + 3(1.28(1.4 - 1))}}{{2(1.28 - 1) + 3(1.4 - 1)}} $
On further solving we get
$ \gamma = 1.33 $
Hence the option A is correct.
Note :
The heat capacity ratio is important for its applications in thermodynamically reversible processes, especially involving ideal gases; the speed of sound depends on that factor. For an ideal gas. The heat capacity is constant with temperature.
Complete Step By Step Answer:
Let $ {n_1} $ be the moles of oxygen
$ {n_2} $ be the moles of carbon dioxide
Total moles = $ {n_1} + {n_2} = n $
$ {\gamma _1},{C_{p1}},{C_{v1}} $ be for oxygen and
$ {\gamma _2},{C_{p2}},{C_{v2}} $ be for carbon dioxide
Now we have to calculate the value of $ {C_p} $ and $ {C_v} $ for a given mixture of gases.
$ {C_v} $ for mixture of gases.
$ {C_v} = \dfrac{{{C_{v1}}{n_1} + {C_{v2}}{n_2}}}{{{n_1} + {n_2}}} $ ---(1)
And $ {C_p} $ for mixture of gases
$ {C_p} = \dfrac{{{C_{p1}}{n_1} + {C_{p2}}{n_2}}}{{{n_1} + {n_2}}} $ ----(2)
Now we have
$ \gamma = \dfrac{{{C_p}}}{{{C_v}}} $ and $ {C_v} = \dfrac{R}{{\gamma - 1}} $
Therefore $ {C_p} = \dfrac{{\gamma R}}{{\gamma - 1}} $
Now putting all values in equation 1 and 2 we get
$ {C_p} = \dfrac{{{n_1}{C_{p1}} + {n_2}{C_{p2}}}}{n} $
$ {C_p} = \dfrac{{{n_1}\dfrac{{{\gamma _1}R}}{{{\gamma _1} - 1}} + {n_2}\dfrac{{{\gamma _2}R}}{{{\gamma _2} - 1}}}}{n} $ ……… (3)
$ {C_v} = \dfrac{{{n_1}{C_{v1}} + {n_2}{C_{v2}}}}{n} $
$ {C_v} = \dfrac{{{n_1}\dfrac{R}{{{\gamma _1} - 1}} + {n_2}\dfrac{R}{{{\gamma _2} - 1}}}}{n} $ ………. (4)
From equation 3 and 4 we get
$ \gamma = \dfrac{{{C_p}}}{{{C_v}}} $ = $ = \dfrac{{\dfrac{{{n_1}\dfrac{{{\gamma _1}R}}{{{\gamma _1} - 1}} + {n_2}\dfrac{{{\gamma _2}R}}{{{\gamma _2} - 1}}}}{n}}}{{\dfrac{{{n_1}\dfrac{R}{{{\gamma _1} - 1}} + {n_2}\dfrac{R}{{{\gamma _2} - 1}}}}{n}}} $
Finally we get
$ \gamma = \dfrac{{{n_1}{\gamma _1}({\gamma _2} - 1) + {n_2}{\gamma _2}({\gamma _1} - 1)}}{{{n_1}({\gamma _2} - 1) + {n_2}({\gamma _1} - 1)}} $
As we know oxygen is diatomic therefore $ {\gamma _1} $ = 1.4
And for carbon dioxide $ {\gamma _2} $ = 1.28
Putting the values and solving
$ \dfrac{{2.(1.4(1.28 - 1)) + 3(1.28(1.4 - 1))}}{{2(1.28 - 1) + 3(1.4 - 1)}} $
On further solving we get
$ \gamma = 1.33 $
Hence the option A is correct.
Note :
The heat capacity ratio is important for its applications in thermodynamically reversible processes, especially involving ideal gases; the speed of sound depends on that factor. For an ideal gas. The heat capacity is constant with temperature.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

What is periodicity class 11 chemistry CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

Mention the basic forces in nature class 11 physics CBSE

What are porins class 11 biology CBSE

