
What is the bond order of \[N-N\] bond in \[{{N}_{2}}O\] ?
A.1
B.1.5
C.2
D.2.5
Answer
500.4k+ views
Hint: We know that the difference between the number of bonds and antibonds is known as bond order. The bond number is the total number of electron pairs (bonds) that exist between two atoms. A bond's stability is determined by its bond number. The bond number of isoelectronic organisms is the same.
Complete answer:
Bond order is characterized as half the difference between the number of bonding electrons and the number of antibonding electrons in molecular orbital theory. For bonds near their equilibrium lengths, this often but not always produces similar results, but it does not work for extended bonds. Bond order is often used extensively in valence bond theory as a measure of bond power. The Bond order for the given molecule is given by: (Total number of electron pairs in \[N-O\] bonds) / (total number of \[N-O\]bonds) the number of \[A-O\] bonds is three, and the number of resonating structures is two
\[Bond\text{ }order\text{ }will\text{ }be\text{ }\dfrac{Total\text{ }no.\text{ }of\text{ }bonds}{Total\text{ }no.\text{ }of\text{ }canonical\text{ }structures}\text{=}\dfrac{5}{2}\text{=}2.5.\]
The third structure is not possible as nitrogen cannot have two negative charges so we will consider only two structures. In first structure there are three bonds between both nitrogen and in second structure there are two bonds so total bonds is \[5.\]
\[:N\equiv \overset{+1}{\mathop{\overset{{}}{\mathop{N}}\,}}\,-\overset{-1}{\mathop{\underset{\centerdot \centerdot }{\overset{\centerdot \centerdot }{\mathop{O}}}\,}}\,:~~~~~~\overset{-1}{\mathop{\underset{\centerdot \centerdot }{\overset{\centerdot \centerdot }{\mathop{N}}}\,}}\,=\overset{+1}{\mathop{\overset{{}}{\mathop{N}}\,}}\,=\overset{{}}{\mathop{\underset{\centerdot \centerdot }{\overset{\centerdot \centerdot }{\mathop{O}}}\,}}\,~~~~~~:\overset{-2}{\mathop{\underset{\centerdot \centerdot }{\overset{\centerdot \centerdot }{\mathop{N}}}\,}}\,-\overset{+1}{\mathop{\overset{{}}{\mathop{N}}\,}}\,\equiv \overset{-1}{\mathop{\underset{{}}{\overset{{}}{\mathop{O}}}\,}}\,:\]
Therefore, the correct answer is option D.
Note:
The bond order expresses the bond's safety. The molecular orbital makes the idea of a chemical bond's bond order simple to comprehend. It measures the strength of atom-to-atom covalent bonds. The nitrogen ion is a type of ion that is found in nature. The cation \[NO_{2}^{+}\] (removal of electrons is known as cation). It's made by removing an electron from a molecule of nitrogen dioxide.
Complete answer:
Bond order is characterized as half the difference between the number of bonding electrons and the number of antibonding electrons in molecular orbital theory. For bonds near their equilibrium lengths, this often but not always produces similar results, but it does not work for extended bonds. Bond order is often used extensively in valence bond theory as a measure of bond power. The Bond order for the given molecule is given by: (Total number of electron pairs in \[N-O\] bonds) / (total number of \[N-O\]bonds) the number of \[A-O\] bonds is three, and the number of resonating structures is two
\[Bond\text{ }order\text{ }will\text{ }be\text{ }\dfrac{Total\text{ }no.\text{ }of\text{ }bonds}{Total\text{ }no.\text{ }of\text{ }canonical\text{ }structures}\text{=}\dfrac{5}{2}\text{=}2.5.\]
The third structure is not possible as nitrogen cannot have two negative charges so we will consider only two structures. In first structure there are three bonds between both nitrogen and in second structure there are two bonds so total bonds is \[5.\]
\[:N\equiv \overset{+1}{\mathop{\overset{{}}{\mathop{N}}\,}}\,-\overset{-1}{\mathop{\underset{\centerdot \centerdot }{\overset{\centerdot \centerdot }{\mathop{O}}}\,}}\,:~~~~~~\overset{-1}{\mathop{\underset{\centerdot \centerdot }{\overset{\centerdot \centerdot }{\mathop{N}}}\,}}\,=\overset{+1}{\mathop{\overset{{}}{\mathop{N}}\,}}\,=\overset{{}}{\mathop{\underset{\centerdot \centerdot }{\overset{\centerdot \centerdot }{\mathop{O}}}\,}}\,~~~~~~:\overset{-2}{\mathop{\underset{\centerdot \centerdot }{\overset{\centerdot \centerdot }{\mathop{N}}}\,}}\,-\overset{+1}{\mathop{\overset{{}}{\mathop{N}}\,}}\,\equiv \overset{-1}{\mathop{\underset{{}}{\overset{{}}{\mathop{O}}}\,}}\,:\]
Therefore, the correct answer is option D.
Note:
The bond order expresses the bond's safety. The molecular orbital makes the idea of a chemical bond's bond order simple to comprehend. It measures the strength of atom-to-atom covalent bonds. The nitrogen ion is a type of ion that is found in nature. The cation \[NO_{2}^{+}\] (removal of electrons is known as cation). It's made by removing an electron from a molecule of nitrogen dioxide.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

