Answer
Verified
374.1k+ views
Hint :Bond order is the difference of bonding and anti bonding electrons divided by two. Draw the Molecular Orbital diagram for CO and remove an electron from oxygen to get the molecular orbital diagram for $ C{{O}^{+}} $ . Atomic no, of C $ =6 $ and O $ =8 $ .
Complete Step By Step Answer:
The electronic configuration of C is $ \text{1}{{\text{s}}^{2}}2{{s}^{2}}2{{p}^{2}} $ and that of $ {{O}^{+}} $ is $ 1{{s}^{2}}2{{s}^{2}}2{{p}^{3}} $ .
Steps for drawing the Molecular Orbital Diagram
Since $ C{{O}^{+}} $ is a heteronuclear atom, the atom with more electronegativity will be placed lower in the energy level.
For the 1s degenerate orbital, $ 2 $ electrons will go to σ $ 1s $ and $ 2 $ electrons will go to $ $ σ $ *1s $
For the 2s degenerate orbital, $ 2 $ electrons will go to σ $ 2s $ and $ 2 $ electrons will go to σ $ *2s $
For the 2p degenerate orbital , $ 2 $ electrons go to $ \pi 2{{p}_{x}} $ , $ 2 $ electrons will go to $ \pi 2{{p}_{y}} $ and $ 2 $ electrons will go to σ $ 2{{p}_{z}} $ .
Formula to calculate bond order is: $ \dfrac{1}{2}(\text{No}\text{. of }{{\text{e}}^{-}}in\text{ bonding subshell - No}\text{. of }{{\text{e}}^{\text{-}}}\text{in antibonding subshell)} $
Acc. To the diagram 10 $ {{e}^{-}} $ s are in bonding subshell and 4 in antibonding subshell.
But this is the Molecular diagram for $ CO $ , to get Molecular orbital diagram for $ C{{O}^{+}} $ , we will remove an $ {{e}^{-}} $ for the Subshell with higher energy level.
In case of heteronuclear molecules like $ C{{O}^{+}} $ the σ $ *2s $ is placed higher than $ \pi 2{{p}_{x}} $ , $ \pi 2{{p}_{y}} $ , σ $ 2{{p}_{z}} $ . So, the $ {{e}^{-}} $ is removed from σ $ *2s $ subshell.
Therefore, $ \text{No}\text{. of }{{\text{e}}^{-}}in\text{ bonding subshell } $ $ =10 $ and $ \text{No}\text{. of }{{\text{e}}^{\text{-}}}\text{in antibonding subshell} $ $ =3 $
Putting the values in the formula:
$ \dfrac{1}{2}(10-3) $
$ =3.5 $
Hence the Bond order of $ C{{O}^{+}} $ is 3.5.
Note :
$ C{{O}^{+}} $ does not have a symmetric Molecular diagram because it is a heteronuclear molecule. The more electronegative atom i.e., O is placed lower on the energy level. Due to this discrepancy in energies σ $ *2s $ is placed higher than $ \pi 2{{p}_{x}} $ , $ \pi 2{{p}_{y}} $ , σ $ 2{{p}_{z}} $ .
Complete Step By Step Answer:
The electronic configuration of C is $ \text{1}{{\text{s}}^{2}}2{{s}^{2}}2{{p}^{2}} $ and that of $ {{O}^{+}} $ is $ 1{{s}^{2}}2{{s}^{2}}2{{p}^{3}} $ .
Steps for drawing the Molecular Orbital Diagram
Since $ C{{O}^{+}} $ is a heteronuclear atom, the atom with more electronegativity will be placed lower in the energy level.
For the 1s degenerate orbital, $ 2 $ electrons will go to σ $ 1s $ and $ 2 $ electrons will go to $ $ σ $ *1s $
For the 2s degenerate orbital, $ 2 $ electrons will go to σ $ 2s $ and $ 2 $ electrons will go to σ $ *2s $
For the 2p degenerate orbital , $ 2 $ electrons go to $ \pi 2{{p}_{x}} $ , $ 2 $ electrons will go to $ \pi 2{{p}_{y}} $ and $ 2 $ electrons will go to σ $ 2{{p}_{z}} $ .
Formula to calculate bond order is: $ \dfrac{1}{2}(\text{No}\text{. of }{{\text{e}}^{-}}in\text{ bonding subshell - No}\text{. of }{{\text{e}}^{\text{-}}}\text{in antibonding subshell)} $
Acc. To the diagram 10 $ {{e}^{-}} $ s are in bonding subshell and 4 in antibonding subshell.
But this is the Molecular diagram for $ CO $ , to get Molecular orbital diagram for $ C{{O}^{+}} $ , we will remove an $ {{e}^{-}} $ for the Subshell with higher energy level.
In case of heteronuclear molecules like $ C{{O}^{+}} $ the σ $ *2s $ is placed higher than $ \pi 2{{p}_{x}} $ , $ \pi 2{{p}_{y}} $ , σ $ 2{{p}_{z}} $ . So, the $ {{e}^{-}} $ is removed from σ $ *2s $ subshell.
Therefore, $ \text{No}\text{. of }{{\text{e}}^{-}}in\text{ bonding subshell } $ $ =10 $ and $ \text{No}\text{. of }{{\text{e}}^{\text{-}}}\text{in antibonding subshell} $ $ =3 $
Putting the values in the formula:
$ \dfrac{1}{2}(10-3) $
$ =3.5 $
Hence the Bond order of $ C{{O}^{+}} $ is 3.5.
Note :
$ C{{O}^{+}} $ does not have a symmetric Molecular diagram because it is a heteronuclear molecule. The more electronegative atom i.e., O is placed lower on the energy level. Due to this discrepancy in energies σ $ *2s $ is placed higher than $ \pi 2{{p}_{x}} $ , $ \pi 2{{p}_{y}} $ , σ $ 2{{p}_{z}} $ .
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths