
Bond dissociation enthalpy is used to defining enthalpy change of a reaction as
$\left( 1 \right)$ $\Delta {H_r} = \sum {{{\left( {Bond\,dissociation\,enthalpy} \right)}_{{\text{Reactant}}}} - \sum {(Bond\,dissociation} } \,enthalpy{)_{{\text{Product}}}}$
$\left( 2 \right)$ $\Delta {H_r} = \sum {{{\left( {Bond\,dissociation\,enthalpy} \right)}_{{\text{Product}}}} - \sum {(Bond\,dissociation} } \,enthalpy{)_{{\text{Reactant}}}}$
$(3)$ $\Delta H = \sum {{{\left( {Bond\,dissociation\,enthalpy} \right)}_{{\text{Reactant}}}} + \sum {(Bond\,dissociation} } \,enthalpy{)_{{\text{Product}}}}$
$\left( 4 \right)$ None of these
Answer
536.4k+ views
Hint: The Bond dissociation enthalpy is an enthalpy used to break (Different atoms like A-B) one mole of the bond to give separate two gases atom (A+B). If the energy is used to break homolysis bonds (Same atom like A-A) to give free radicals ( ${A^ \bullet } + {A^ \bullet }$).
Complete step by step answer:
As we know the bond enthalpy is defined as the change in the bond dissociation enthalpy bond broken of reactants) and bond dissociation enthalpy (bond formation of reactant).
In $\left( 1 \right)$ , Bond enthalpy is defined as the change in the bond dissociation enthalpy (bond broken of reaction) and the bond dissociation enthalpy (bond formation of reactant).
$\Delta {H_r} = \sum {{{\left( {Bond\,dissociation\,enthalpy} \right)}_{{\text{Reactant}}}} - \sum {(Bond\,dissociation} } \,enthalpy{)_{{\text{Product}}}}$
In $\left( 2 \right)$ , Bond enthalpy is defined as the change in the bond dissociation enthalpy (bond formation of reaction) and the bond dissociation enthalpy (bond broken of reactant).
$\Delta {H_r} = \sum {{{\left( {Bond\,dissociation\,enthalpy} \right)}_{{\text{Product}}}} - \sum {(Bond\,dissociation} } \,enthalpy{)_{{\text{Reactant}}}}$
In $\left( 3 \right)$, , Bond enthalpy is defined as the sum of the bond dissociation enthalpy (bond broken of reaction) and the bond dissociation enthalpy (bond formation of reactant).
$\Delta H = \sum {{{\left( {Bond\,dissociation\,enthalpy} \right)}_{{\text{Reactant}}}} + \sum {(Bond\,dissociation} } \,enthalpy{)_{{\text{Product}}}}$
As we, discussed above the definition and the equation $\left( 1 \right)$ are mention the same condition for the bond dissociation enthalpy
Hence, the correct option is $\left( 1 \right)$ .
Note:
Hess’s law is defined as the sum of the changes in enthalpy for a series of intermediate reaction steps to find the overall change in enthalpy for a reaction.
$1.$Enthalpy change for a reaction is independent of the number of ways a product can be obtained. If the initial and final conditions are the same.
$2.$Negative enthalpy change for a reaction indicates exothermic process, while positive enthalpy change corresponds to endothermic process.
Complete step by step answer:
As we know the bond enthalpy is defined as the change in the bond dissociation enthalpy bond broken of reactants) and bond dissociation enthalpy (bond formation of reactant).
In $\left( 1 \right)$ , Bond enthalpy is defined as the change in the bond dissociation enthalpy (bond broken of reaction) and the bond dissociation enthalpy (bond formation of reactant).
$\Delta {H_r} = \sum {{{\left( {Bond\,dissociation\,enthalpy} \right)}_{{\text{Reactant}}}} - \sum {(Bond\,dissociation} } \,enthalpy{)_{{\text{Product}}}}$
In $\left( 2 \right)$ , Bond enthalpy is defined as the change in the bond dissociation enthalpy (bond formation of reaction) and the bond dissociation enthalpy (bond broken of reactant).
$\Delta {H_r} = \sum {{{\left( {Bond\,dissociation\,enthalpy} \right)}_{{\text{Product}}}} - \sum {(Bond\,dissociation} } \,enthalpy{)_{{\text{Reactant}}}}$
In $\left( 3 \right)$, , Bond enthalpy is defined as the sum of the bond dissociation enthalpy (bond broken of reaction) and the bond dissociation enthalpy (bond formation of reactant).
$\Delta H = \sum {{{\left( {Bond\,dissociation\,enthalpy} \right)}_{{\text{Reactant}}}} + \sum {(Bond\,dissociation} } \,enthalpy{)_{{\text{Product}}}}$
As we, discussed above the definition and the equation $\left( 1 \right)$ are mention the same condition for the bond dissociation enthalpy
Hence, the correct option is $\left( 1 \right)$ .
Note:
Hess’s law is defined as the sum of the changes in enthalpy for a series of intermediate reaction steps to find the overall change in enthalpy for a reaction.
$1.$Enthalpy change for a reaction is independent of the number of ways a product can be obtained. If the initial and final conditions are the same.
$2.$Negative enthalpy change for a reaction indicates exothermic process, while positive enthalpy change corresponds to endothermic process.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Draw ray diagrams each showing i myopic eye and ii class 12 physics CBSE

Which state in India is known as the Granary of India class 12 social science CBSE

Using Huygens wave theory derive Snells law of ref class 12 physics CBSE

Dihybrid cross is made between RRYY yellow round seed class 12 biology CBSE

