
Bond dissociation enthalpy is used to defining enthalpy change of a reaction as
$\left( 1 \right)$ $\Delta {H_r} = \sum {{{\left( {Bond\,dissociation\,enthalpy} \right)}_{{\text{Reactant}}}} - \sum {(Bond\,dissociation} } \,enthalpy{)_{{\text{Product}}}}$
$\left( 2 \right)$ $\Delta {H_r} = \sum {{{\left( {Bond\,dissociation\,enthalpy} \right)}_{{\text{Product}}}} - \sum {(Bond\,dissociation} } \,enthalpy{)_{{\text{Reactant}}}}$
$(3)$ $\Delta H = \sum {{{\left( {Bond\,dissociation\,enthalpy} \right)}_{{\text{Reactant}}}} + \sum {(Bond\,dissociation} } \,enthalpy{)_{{\text{Product}}}}$
$\left( 4 \right)$ None of these
Answer
537.6k+ views
Hint: The Bond dissociation enthalpy is an enthalpy used to break (Different atoms like A-B) one mole of the bond to give separate two gases atom (A+B). If the energy is used to break homolysis bonds (Same atom like A-A) to give free radicals ( ${A^ \bullet } + {A^ \bullet }$).
Complete step by step answer:
As we know the bond enthalpy is defined as the change in the bond dissociation enthalpy bond broken of reactants) and bond dissociation enthalpy (bond formation of reactant).
In $\left( 1 \right)$ , Bond enthalpy is defined as the change in the bond dissociation enthalpy (bond broken of reaction) and the bond dissociation enthalpy (bond formation of reactant).
$\Delta {H_r} = \sum {{{\left( {Bond\,dissociation\,enthalpy} \right)}_{{\text{Reactant}}}} - \sum {(Bond\,dissociation} } \,enthalpy{)_{{\text{Product}}}}$
In $\left( 2 \right)$ , Bond enthalpy is defined as the change in the bond dissociation enthalpy (bond formation of reaction) and the bond dissociation enthalpy (bond broken of reactant).
$\Delta {H_r} = \sum {{{\left( {Bond\,dissociation\,enthalpy} \right)}_{{\text{Product}}}} - \sum {(Bond\,dissociation} } \,enthalpy{)_{{\text{Reactant}}}}$
In $\left( 3 \right)$, , Bond enthalpy is defined as the sum of the bond dissociation enthalpy (bond broken of reaction) and the bond dissociation enthalpy (bond formation of reactant).
$\Delta H = \sum {{{\left( {Bond\,dissociation\,enthalpy} \right)}_{{\text{Reactant}}}} + \sum {(Bond\,dissociation} } \,enthalpy{)_{{\text{Product}}}}$
As we, discussed above the definition and the equation $\left( 1 \right)$ are mention the same condition for the bond dissociation enthalpy
Hence, the correct option is $\left( 1 \right)$ .
Note:
Hess’s law is defined as the sum of the changes in enthalpy for a series of intermediate reaction steps to find the overall change in enthalpy for a reaction.
$1.$Enthalpy change for a reaction is independent of the number of ways a product can be obtained. If the initial and final conditions are the same.
$2.$Negative enthalpy change for a reaction indicates exothermic process, while positive enthalpy change corresponds to endothermic process.
Complete step by step answer:
As we know the bond enthalpy is defined as the change in the bond dissociation enthalpy bond broken of reactants) and bond dissociation enthalpy (bond formation of reactant).
In $\left( 1 \right)$ , Bond enthalpy is defined as the change in the bond dissociation enthalpy (bond broken of reaction) and the bond dissociation enthalpy (bond formation of reactant).
$\Delta {H_r} = \sum {{{\left( {Bond\,dissociation\,enthalpy} \right)}_{{\text{Reactant}}}} - \sum {(Bond\,dissociation} } \,enthalpy{)_{{\text{Product}}}}$
In $\left( 2 \right)$ , Bond enthalpy is defined as the change in the bond dissociation enthalpy (bond formation of reaction) and the bond dissociation enthalpy (bond broken of reactant).
$\Delta {H_r} = \sum {{{\left( {Bond\,dissociation\,enthalpy} \right)}_{{\text{Product}}}} - \sum {(Bond\,dissociation} } \,enthalpy{)_{{\text{Reactant}}}}$
In $\left( 3 \right)$, , Bond enthalpy is defined as the sum of the bond dissociation enthalpy (bond broken of reaction) and the bond dissociation enthalpy (bond formation of reactant).
$\Delta H = \sum {{{\left( {Bond\,dissociation\,enthalpy} \right)}_{{\text{Reactant}}}} + \sum {(Bond\,dissociation} } \,enthalpy{)_{{\text{Product}}}}$
As we, discussed above the definition and the equation $\left( 1 \right)$ are mention the same condition for the bond dissociation enthalpy
Hence, the correct option is $\left( 1 \right)$ .
Note:
Hess’s law is defined as the sum of the changes in enthalpy for a series of intermediate reaction steps to find the overall change in enthalpy for a reaction.
$1.$Enthalpy change for a reaction is independent of the number of ways a product can be obtained. If the initial and final conditions are the same.
$2.$Negative enthalpy change for a reaction indicates exothermic process, while positive enthalpy change corresponds to endothermic process.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Bacterial cell wall is made up of A Cellulose B Hemicellulose class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

