Ball A is falling vertically downwards with velocity ${v_1}$ . it strikes elastically with a wedge moving horizontally with velocity ${v_2}$ as shown in figure. What is the ratio of $\dfrac{{{v_1}}}{{{v_2}}}$, when that ball bounces back in vertically upward direction relative to the wedge:
A. $\sqrt 3 $
B. $\dfrac{1}{{\sqrt 3 }}$
C. $\dfrac{1}{{\sqrt 2 }}$
D.$\dfrac{m}{2}$
Answer
280.8k+ views
Hint: In the given data a ball is falling towards the downwards with some velocity and it strikes to the wedge which was moving horizontally with some velocity if the direction of two velocities changes then the ratio of those velocities is at some angle given in the data. Now by using momentum of inertia with a given angle we are finding the ratio of velocities.
Complete step-by-step solution:
Given data, velocity ${v_1}$ and another velocity ${v_2}$
Here the forces applied perpendicular to the wedge, so momentum of the charge is initial momentum of inertia and final momentum inertia and the momentum changes only in the direction of the wedge,
${P_i} = {P_f}$
Thus, $m{v_1}\cos {30^ \circ } = m{v_2}\sin {30^ \circ }$
Here mass is same and velocities are different, as we discussed earlier at some angle is applied
Then we get the ratio of two velocities is,
$\dfrac{{{v_1}}}{{{v_2}}} = \tan {30^ \circ }$
From trigonometric equations tan value is,
$\dfrac{{{v_1}}}{{{v_2}}} = \dfrac{1}{{\sqrt 3 }}$
Hence we have proved the ratio of velocities is $\dfrac{1}{{\sqrt 3 }}$
Note: Momentum is defined as the product of mass in motion and velocity. Thus from the given velocities we have proved the ratio of velocities, hence the correct option is b. in the given data the mass is constant and velocities are different and given some angle at the wedge of the objects. Hence we have proved from the momentum of the inertia formula.
Complete step-by-step solution:
Given data, velocity ${v_1}$ and another velocity ${v_2}$
Here the forces applied perpendicular to the wedge, so momentum of the charge is initial momentum of inertia and final momentum inertia and the momentum changes only in the direction of the wedge,
${P_i} = {P_f}$
Thus, $m{v_1}\cos {30^ \circ } = m{v_2}\sin {30^ \circ }$
Here mass is same and velocities are different, as we discussed earlier at some angle is applied
Then we get the ratio of two velocities is,
$\dfrac{{{v_1}}}{{{v_2}}} = \tan {30^ \circ }$
From trigonometric equations tan value is,
$\dfrac{{{v_1}}}{{{v_2}}} = \dfrac{1}{{\sqrt 3 }}$
Hence we have proved the ratio of velocities is $\dfrac{1}{{\sqrt 3 }}$
Note: Momentum is defined as the product of mass in motion and velocity. Thus from the given velocities we have proved the ratio of velocities, hence the correct option is b. in the given data the mass is constant and velocities are different and given some angle at the wedge of the objects. Hence we have proved from the momentum of the inertia formula.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Define absolute refractive index of a medium

Which of the following would not be a valid reason class 11 biology CBSE

Why should electric field lines never cross each other class 12 physics CBSE

An electrostatic field line is a continuous curve That class 12 physics CBSE

What is meant by monosporic development of female class 11 biology CBSE

Trending doubts
What is 1 divided by 0 class 8 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

What is the past tense of read class 10 english CBSE

What is pollution? How many types of pollution? Define it

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

How many crores make 10 million class 7 maths CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

How fast is 60 miles per hour in kilometres per ho class 10 maths CBSE
