
Ball A is falling vertically downwards with velocity ${v_1}$ . it strikes elastically with a wedge moving horizontally with velocity ${v_2}$ as shown in figure. What is the ratio of $\dfrac{{{v_1}}}{{{v_2}}}$, when that ball bounces back in vertically upward direction relative to the wedge:
A. $\sqrt 3 $
B. $\dfrac{1}{{\sqrt 3 }}$
C. $\dfrac{1}{{\sqrt 2 }}$
D.$\dfrac{m}{2}$
Answer
409.8k+ views
Hint: In the given data a ball is falling towards the downwards with some velocity and it strikes to the wedge which was moving horizontally with some velocity if the direction of two velocities changes then the ratio of those velocities is at some angle given in the data. Now by using momentum of inertia with a given angle we are finding the ratio of velocities.
Complete step-by-step solution:
Given data, velocity ${v_1}$ and another velocity ${v_2}$
Here the forces applied perpendicular to the wedge, so momentum of the charge is initial momentum of inertia and final momentum inertia and the momentum changes only in the direction of the wedge,
${P_i} = {P_f}$
Thus, $m{v_1}\cos {30^ \circ } = m{v_2}\sin {30^ \circ }$
Here mass is same and velocities are different, as we discussed earlier at some angle is applied
Then we get the ratio of two velocities is,
$\dfrac{{{v_1}}}{{{v_2}}} = \tan {30^ \circ }$
From trigonometric equations tan value is,
$\dfrac{{{v_1}}}{{{v_2}}} = \dfrac{1}{{\sqrt 3 }}$
Hence we have proved the ratio of velocities is $\dfrac{1}{{\sqrt 3 }}$
Note: Momentum is defined as the product of mass in motion and velocity. Thus from the given velocities we have proved the ratio of velocities, hence the correct option is b. in the given data the mass is constant and velocities are different and given some angle at the wedge of the objects. Hence we have proved from the momentum of the inertia formula.
Complete step-by-step solution:
Given data, velocity ${v_1}$ and another velocity ${v_2}$
Here the forces applied perpendicular to the wedge, so momentum of the charge is initial momentum of inertia and final momentum inertia and the momentum changes only in the direction of the wedge,
${P_i} = {P_f}$
Thus, $m{v_1}\cos {30^ \circ } = m{v_2}\sin {30^ \circ }$
Here mass is same and velocities are different, as we discussed earlier at some angle is applied
Then we get the ratio of two velocities is,
$\dfrac{{{v_1}}}{{{v_2}}} = \tan {30^ \circ }$
From trigonometric equations tan value is,
$\dfrac{{{v_1}}}{{{v_2}}} = \dfrac{1}{{\sqrt 3 }}$
Hence we have proved the ratio of velocities is $\dfrac{1}{{\sqrt 3 }}$
Note: Momentum is defined as the product of mass in motion and velocity. Thus from the given velocities we have proved the ratio of velocities, hence the correct option is b. in the given data the mass is constant and velocities are different and given some angle at the wedge of the objects. Hence we have proved from the momentum of the inertia formula.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Express the following as a fraction and simplify a class 7 maths CBSE

The length and width of a rectangle are in ratio of class 7 maths CBSE

The ratio of the income to the expenditure of a family class 7 maths CBSE

How do you write 025 million in scientific notatio class 7 maths CBSE

How do you convert 295 meters per second to kilometers class 7 maths CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

Write down 5 differences between Ntype and Ptype s class 11 physics CBSE
