At $100 K$ and $0.1$ atmospheric pressure, the volume of helium gas is $10$ litres. If volume and pressure are doubled, its temperature will change to
Answer
278.1k+ views
Hint: The conductor is described as the material which enables the electric current or heat to transfer through it. The electrons inside a conductor are freely passed from atom to atom when the potential difference is implemented across them. The materials which do not provide the electric current or heat to move through it such kind of material is called an insulator. The covalent bond between the insulator atoms is powerful. Thus, the charges do not flow freely. The resistivity of the insulator is very large.
Complete step-by-step solution:
The equation of gas is:
$PV = nRT$
Where, P is the pressure of the gas.
V is the volume of the gas.
T is the temperature of the gas.
R is the universal gas constant.
n is the number of moles.
N, R are constants.
$PV \propto T$
$\implies \dfrac{PV}{T} = constant$
$\implies \dfrac{P_{1}V_{1}}{T_{1}} = \dfrac{P_{2}V_{2}}{T_{2}}$
If volume and pressure are doubled; $ P_{1} = 2 P_{2}$, $V_{2} = 2 V_{1}$ and $ T_{1} = 100K$
$ \dfrac{P_{1}V_{1}}{100 } = \dfrac{2P_{1} \times 2V_{1}}{T_{2}}$
$\implies T_{2}= 4\times 100$
$\implies T_{2}= 400 K$
Hence, Temperature will change to $400 K$.
Note:If two gases have an equal volume, they must contain the exact molecular quantities. The combined gas law formula declares that with a constant amount of gas, the gas pressure multiplied by its volume and divided by its temperature is also consistent.
Complete step-by-step solution:
The equation of gas is:
$PV = nRT$
Where, P is the pressure of the gas.
V is the volume of the gas.
T is the temperature of the gas.
R is the universal gas constant.
n is the number of moles.
N, R are constants.
$PV \propto T$
$\implies \dfrac{PV}{T} = constant$
$\implies \dfrac{P_{1}V_{1}}{T_{1}} = \dfrac{P_{2}V_{2}}{T_{2}}$
If volume and pressure are doubled; $ P_{1} = 2 P_{2}$, $V_{2} = 2 V_{1}$ and $ T_{1} = 100K$
$ \dfrac{P_{1}V_{1}}{100 } = \dfrac{2P_{1} \times 2V_{1}}{T_{2}}$
$\implies T_{2}= 4\times 100$
$\implies T_{2}= 400 K$
Hence, Temperature will change to $400 K$.
Note:If two gases have an equal volume, they must contain the exact molecular quantities. The combined gas law formula declares that with a constant amount of gas, the gas pressure multiplied by its volume and divided by its temperature is also consistent.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Define absolute refractive index of a medium

Which of the following would not be a valid reason class 11 biology CBSE

Why should electric field lines never cross each other class 12 physics CBSE

An electrostatic field line is a continuous curve That class 12 physics CBSE

What is meant by monosporic development of female class 11 biology CBSE

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

How many meters are there in a kilometer And how many class 8 maths CBSE

What is pollution? How many types of pollution? Define it

Change the following sentences into negative and interrogative class 10 english CBSE

What were the major teachings of Baba Guru Nanak class 7 social science CBSE

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

Draw a labelled sketch of the human eye class 12 physics CBSE
