
At $100 K$ and $0.1$ atmospheric pressure, the volume of helium gas is $10$ litres. If volume and pressure are doubled, its temperature will change to
Answer
505.2k+ views
Hint: The conductor is described as the material which enables the electric current or heat to transfer through it. The electrons inside a conductor are freely passed from atom to atom when the potential difference is implemented across them. The materials which do not provide the electric current or heat to move through it such kind of material is called an insulator. The covalent bond between the insulator atoms is powerful. Thus, the charges do not flow freely. The resistivity of the insulator is very large.
Complete step-by-step solution:
The equation of gas is:
$PV = nRT$
Where, P is the pressure of the gas.
V is the volume of the gas.
T is the temperature of the gas.
R is the universal gas constant.
n is the number of moles.
N, R are constants.
$PV \propto T$
$\implies \dfrac{PV}{T} = constant$
$\implies \dfrac{P_{1}V_{1}}{T_{1}} = \dfrac{P_{2}V_{2}}{T_{2}}$
If volume and pressure are doubled; $ P_{1} = 2 P_{2}$, $V_{2} = 2 V_{1}$ and $ T_{1} = 100K$
$ \dfrac{P_{1}V_{1}}{100 } = \dfrac{2P_{1} \times 2V_{1}}{T_{2}}$
$\implies T_{2}= 4\times 100$
$\implies T_{2}= 400 K$
Hence, Temperature will change to $400 K$.
Note:If two gases have an equal volume, they must contain the exact molecular quantities. The combined gas law formula declares that with a constant amount of gas, the gas pressure multiplied by its volume and divided by its temperature is also consistent.
Complete step-by-step solution:
The equation of gas is:
$PV = nRT$
Where, P is the pressure of the gas.
V is the volume of the gas.
T is the temperature of the gas.
R is the universal gas constant.
n is the number of moles.
N, R are constants.
$PV \propto T$
$\implies \dfrac{PV}{T} = constant$
$\implies \dfrac{P_{1}V_{1}}{T_{1}} = \dfrac{P_{2}V_{2}}{T_{2}}$
If volume and pressure are doubled; $ P_{1} = 2 P_{2}$, $V_{2} = 2 V_{1}$ and $ T_{1} = 100K$
$ \dfrac{P_{1}V_{1}}{100 } = \dfrac{2P_{1} \times 2V_{1}}{T_{2}}$
$\implies T_{2}= 4\times 100$
$\implies T_{2}= 400 K$
Hence, Temperature will change to $400 K$.
Note:If two gases have an equal volume, they must contain the exact molecular quantities. The combined gas law formula declares that with a constant amount of gas, the gas pressure multiplied by its volume and divided by its temperature is also consistent.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

