
Assertion: when diver dives, the rotational kinetic energy of the diver increases during several somersaults.
Reason: When diver pulls his limbs, the moment of inertia decreases and on the account of conversion of angular momentum his angular speed increases.
A. Both Assertion and Reason are correct and Reason is the correct explanation for Assertion
B. Both Assertion and Reason are correct but Reason is not the correct explanation for Assertion
C. Assertion is correct but Reason is incorrect
D. Both Assertion and Reason are incorrect
Answer
410.1k+ views
Hint:Use conservation of angular momentum to solve this problem. The conservation of angular momentum states that the angular momentum of a system is conserved at any instant of time if any external torque is not applied to the system.
Formula used:
The conservation of angular momentum is given by,
\[L = I\omega = k\]
where \[L\] is the angular momentum of the body \[I\] is the moment of inertia of the body \[\omega \] is the angular velocity of the body and \[k\] is some constant.
Complete step by step answer:
When a diver dives it is said in the question that the rotational kinetic energy of the diver increases during several somersaults. When a diver dives the external torque acting on the diver is zero. Hence, the angular momentum of the diver is conserved.
Now, let’s say at the point of jump the moment of inertia of the diver is \[{I_1}\] and the angular momentum of the diver is \[{\omega _1}\] and when the diver pulls his limbs the moment of inertia of the diver is \[{I_2}\] and the angular momentum of the diver is \[{\omega _2}\]. So, we can write, \[{I_1}{\omega _1} = {I_2}{\omega _2}\].
Now, when the diver pulls his limbs the radius of its rotation decreases and the mass concentrates on the axis of rotation hence the moment of inertia decreases.
\[{I_1} > {I_2}\]
So, from conservation of angular momentum the angular velocity increases.
\[{\omega _1} < {\omega _2}\]
Also, since the angular speed increases rotational kinetic energy also increases. Hence, the angular speed or velocity of the diver increases. Hence, Both Assertion and Reason are correct and Reason is the correct explanation for Assertion.
Hence, option A is the correct answer.
Note: The rotational kinetic energy of a rotating body is given by, \[\dfrac{1}{2}I{\omega ^2}\]. So, when the moment of inertia decreases and the angular speed increases the increase in angular speed increases the kinetic energy with the square of it. So, net kinetic energy increases when the moment of inertia decreases.
Formula used:
The conservation of angular momentum is given by,
\[L = I\omega = k\]
where \[L\] is the angular momentum of the body \[I\] is the moment of inertia of the body \[\omega \] is the angular velocity of the body and \[k\] is some constant.
Complete step by step answer:
When a diver dives it is said in the question that the rotational kinetic energy of the diver increases during several somersaults. When a diver dives the external torque acting on the diver is zero. Hence, the angular momentum of the diver is conserved.
Now, let’s say at the point of jump the moment of inertia of the diver is \[{I_1}\] and the angular momentum of the diver is \[{\omega _1}\] and when the diver pulls his limbs the moment of inertia of the diver is \[{I_2}\] and the angular momentum of the diver is \[{\omega _2}\]. So, we can write, \[{I_1}{\omega _1} = {I_2}{\omega _2}\].
Now, when the diver pulls his limbs the radius of its rotation decreases and the mass concentrates on the axis of rotation hence the moment of inertia decreases.
\[{I_1} > {I_2}\]
So, from conservation of angular momentum the angular velocity increases.
\[{\omega _1} < {\omega _2}\]
Also, since the angular speed increases rotational kinetic energy also increases. Hence, the angular speed or velocity of the diver increases. Hence, Both Assertion and Reason are correct and Reason is the correct explanation for Assertion.
Hence, option A is the correct answer.
Note: The rotational kinetic energy of a rotating body is given by, \[\dfrac{1}{2}I{\omega ^2}\]. So, when the moment of inertia decreases and the angular speed increases the increase in angular speed increases the kinetic energy with the square of it. So, net kinetic energy increases when the moment of inertia decreases.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Express the following as a fraction and simplify a class 7 maths CBSE

The length and width of a rectangle are in ratio of class 7 maths CBSE

The ratio of the income to the expenditure of a family class 7 maths CBSE

How do you write 025 million in scientific notatio class 7 maths CBSE

How do you convert 295 meters per second to kilometers class 7 maths CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

Write down 5 differences between Ntype and Ptype s class 11 physics CBSE
